留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabric image retrieval algorithm based on fractal coding and Zernike moment under the wavelet transform

ZHANG Qin CAO Yi-qing

张琴, 曹一青. 小波变换下基于分形编码和 Zernike 矩的织物图像检索算法[J]. 中国光学(中英文), 2023, 16(3): 715-725. doi: 10.37188/CO.EN-2022-0021
引用本文: 张琴, 曹一青. 小波变换下基于分形编码和 Zernike 矩的织物图像检索算法[J]. 中国光学(中英文), 2023, 16(3): 715-725. doi: 10.37188/CO.EN-2022-0021
ZHANG Qin, CAO Yi-qing. Fabric image retrieval algorithm based on fractal coding and Zernike moment under the wavelet transform[J]. Chinese Optics, 2023, 16(3): 715-725. doi: 10.37188/CO.EN-2022-0021
Citation: ZHANG Qin, CAO Yi-qing. Fabric image retrieval algorithm based on fractal coding and Zernike moment under the wavelet transform[J]. Chinese Optics, 2023, 16(3): 715-725. doi: 10.37188/CO.EN-2022-0021

小波变换下基于分形编码和 Zernike 矩的织物图像检索算法

详细信息
  • 中图分类号: TN919.81

Fabric image retrieval algorithm based on fractal coding and Zernike moment under the wavelet transform

doi: 10.37188/CO.EN-2022-0021
Funds: Supported by National Youth Science Foundation of China (No. 62205168); Project of the Young and Middle-aged Teachers’ Education Research Projects of Fujian Province of China (No. JAT200534)
More Information
    Author Bio:

    ZHANG Qin (1988—), M.E, Lecturer, School of Mechatronics and Information Engineering, Putian University. Her research interests are in digital image retrieval and optical measurement. E-mail: daisyzhangq@126.com

    Corresponding author: daisyzhangq@126.com
  • 摘要:

    为帮助纺织企业的工作人员快速、准确地从数据库中检索出与织物图像相同或相似的图像,提出了一种小波变换下基于分形编码和 Zernike 矩的织物图像检索算法。首先,利用小波变换获得低频分量,对变换后的低频子图进行分形编码,得到编码参数。然后,计算低频子图像的 Zernike 矩。将小波变换下的分形编码参数和Zernike 矩相结合作为织物图像检索的特征量。相比于单特征检索方法,该算法克服了精度低、耗时长的问题。与基本分形算法(BFIC)、联合正交分形参数和改进的 Hu 不变矩算法(HVKF)以及稀疏分形图像压缩算法(SFIC)相比,该算法确保了重建图像的质量和较低的编码时间。实验结果表明,织物图像检索的平均精度和平均召回率均高于现有的检索方法。

     

  • Figure 1.  Part of the fabric images

    Figure 2.  Results of two-layer wavelet transform:(a) approximate coefficient ca2; (b) horizontal component chd2; (c) vertical component cvd; (d) diagonal component cdd2

    Figure 3.  Decoding images under different algorithms (from left to right are original image, BFIC, HVKF, SFIC and FZW results)

    Figure 4.  Comparison of decoding image quality under different algorithms

    Figure 5.  Precision-recall (P-R) curves under different algorithms

    Table  1.   Isometric transform

    j$q(j)$
    1Identity transformation
    2symmetry of the X axis
    3symmetry of the Y axis
    4Rotate 180 degrees
    5$y = - x$
    6$y = x$
    7Rotate 90 degrees counterclockwise
    8Rotate 270 degrees counterclockwise
    下载: 导出CSV

    Table  2.   Average PSNR of 3000 images with four different methods

    MethodBFICHVKFSFICFZW
    PSNR/dB28.2631.4736.3837.21
    下载: 导出CSV

    Table  3.   Comparison of decoding image quality and encoding time under different algorithms

    ImagesBFICHVKFSFICFZW
    PSNR/dBTime/sSSIMPSNR/dBTime/sSSIMPSNR/dBTime/sSSIMPSNR/dBTime/sSSIM
    Trellis28.44727.810.80532.72165.370.85237.8665.760.93835.8943.670.921
    Flower127.72748.320.74231.85148.880.82338.5383.630.95538.8243.850.978
    Cluster29.01733.700.84630.46160.530.86935.4890.080.93736.3038.230.945
    Stripes128.56742.240.78430.80156.600.85836.0682.340.94336.7138.130.960
    Leaves28.99736.590.80833.54163.470.88937.2571.090.94637.5742.970.966
    Stripes229.12740.680.81229.23163.260.85637.9387.720.93338.1544.280.974
    Flower228.70728.760.77430.53155.040.84238.2273.510.98637.6438.110.982
    Rhombus27.85730.050.69230.07163.770.87033.1082.550.96935.2142.930.983
    Flame28.13757.900.80231.07169.900.85836.3780.610.94437.2947.570.975
    Diamond27.32724.810.76930.32166.230.81034.7578.850.92638.4351.520.979
    Curve28.66675.550.80732.45147.960.87136.1863.480.93237.0635.920.968
    Dots29.57701.530.82132.76158.030.86436.9278.800.93938.2837.690.986
    Wave28.29681.630.79430.97150.540.80637.1576.050.94537.1838.500.964
    Scroll27.73717.840.65429.60161.860.79735.1079.370.89936.9938.030.943
    Twill129.54727.540.81131.55163.430.85337.2275.910.93837.6139.440.955
    Circle127.94720.090.76331.89159.870.84734.8873.000.91737.2640.160.967
    下载: 导出CSV
  • [1] SINGH C, KAUR K P. A fast and efficient image retrieval system based on color and texture features[J]. Journal of Visual Communication and Image Representation, 2016, 41: 225-238. doi: 10.1016/j.jvcir.2016.10.002
    [2] LEE J, SUL I. Construction of garment pattern shape information system using image analysis and shape recognition techniques[J]. International Journal of Clothing Science and Technology, 2016, 28(4): 543-555. doi: 10.1108/IJCST-10-2015-0114
    [3] HU X D, FU M Y, ZHU ZH J, et al. Unsupervised defect detection algorithm for printed fabrics using content-based image retrieval techniques[J]. Textile Research Journal, 2021, 91(21-22): 2551-2566. doi: 10.1177/00405175211008614
    [4] ZHANG N, XIANG J, WANG L, et al. Image retrieval of wool fabric. Part II: based on low-level color features[J]. Textile Research Journal, 2020, 90(7-8): 797-808. doi: 10.1177/0040517519881819
    [5] XIANG J, ZHANG N, PAN R R, et al. Fabric retrieval based on multi-task learning[J]. IEEE Transactions on Image Processing, 2021, 30: 1570-1582. doi: 10.1109/TIP.2020.3043877
    [6] JIANG D Y, KIM J. Image retrieval method based on image feature fusion and discrete cosine transform[J]. Applied Sciences, 2021, 11(12): 5701. doi: 10.3390/app11125701
    [7] KHALID M J, IRFAN M, ALI T, et al. Integration of discrete wavelet transform, DBSCAN, and classifiers for efficient content based image retrieval[J]. Electronics, 2020, 9(11): 1886. doi: 10.3390/electronics9111886
    [8] PAN R R, GAO W D, LI W, et al. Image analysis for seam-puckering evaluation[J]. Textile Research Journal, 2017, 87(20): 2513-2523. doi: 10.1177/0040517516673330
    [9] LIU P ZH, GUO J M, CHAMNONGTHAI K, et al. Fusion of color histogram and LBP-based features for texture image retrieval and classification[J]. Information Sciences, 2017, 390: 95-111. doi: 10.1016/j.ins.2017.01.025
    [10] XIN S, SONG ZH G, SHI J L, et al. Multiple channels local binary pattern for color texture Representation and classification[J]. Signal Processing:Image Communication, 2021, 98: 116392. doi: 10.1016/j.image.2021.116392
    [11] JAMIL N, SOH H C, SEMBOK T M T, et al.. A modified edge-based region growing segmentation of geometric objects[C]//Lecture Notes in Computer Science. Berlin: Springer-Verlag, 2011: 99.
    [12] FU B L, LIU X G. An intelligent computational framework for the definition and identification of the womenswear silhouettes[J]. International Journal of Clothing Science and Technology, 2019, 31(2): 158-180. doi: 10.1108/IJCST-08-2017-0128
    [13] CORPUS G, PIÑERO D P. Short-term effect of wearing of extended depth-of-focus contact lenses in myopic children: a pilot study[J]. Applied Sciences, 2022, 12(1): 431. doi: 10.3390/app12010431
    [14] BAR O, BIBRZYCKI Ł, NIEDŹWIECKI M, et al. Zernike moment based classification of cosmic ray candidate hits from CMOS sensors[J]. Sensors, 2021, 21(22): 7718. doi: 10.3390/s21227718
    [15] YU X L, WANG H L. Support vector machine classification model for color fastness to ironing of vat dyes[J]. Textile Research Journal, 2021, 91(15-16): 1889-1899. doi: 10.1177/0040517521992366
    [16] FAYAZ M, TOROKELDIEV N, TURDUMAMATOV S, et al. An efficient methodology for brain MRI classification based on DWT and convolutional neural network[J]. Sensors, 2021, 21(22): 7480. doi: 10.3390/s21227480
    [17] DARAEE F, MOZAFFARI S. Watermarking in binary document images using fractal codes[J]. Pattern Recognition Letters, 2014, 35: 120-129. doi: 10.1016/j.patrec.2013.04.022
    [18] AHMAD M, AGARWAL S, ALKHAYYAT A, et al. An image encryption algorithm based on new generalized fusion fractal structure[J]. Information Sciences, 2022, 592: 1-20. doi: 10.1016/j.ins.2022.01.042
    [19] JAGANNADHAM D B V, RAJU G V S, NARAYANA D V S. Novel performance analysis of DCT, DWT and fractal coding in image compression[M]//RAJU K S, SENKERIK R, LANKA S P, et al.. Data Engineering and Communication Technology. Singapore: Springer, 2020: 611-622.
    [20] HUANG X Q, ZHANG Q, LIU W B. A new method for image retrieval based on analyzing fractal coding characters[J]. Journal of Visual Communication and Image Representation, 2013, 24(1): 42-47. doi: 10.1016/j.jvcir.2012.10.005
    [21] ZHANG Q, HUANG X Q, LIU W B, et al. An effective image retrieval method based on Kernel Density Estimation of collage error and moment invariants[J]. Journal of Electronics (China), 2013, 30(4): 391-400. doi: 10.1007/s11767-013-3031-4
    [22] TEAGUE M R. Image analysis via the general theory of moments[J]. Journal of the Optical Society of America, 1980, 70(8): 920-930.
    [23] WANG Y, ZHAO Y SH, CHEN Y. Texture classification using rotation invariant models on integrated local binary pattern and Zernike moments[J]. Eurasip Journal on Advances in Signal Processing, 2014, 2014(1): 182. doi: 10.1186/1687-6180-2014-182
    [24] SWAIN M, SWAIN D. An effective watermarking technique using BTC and SVD for image authentication and quality recovery[J]. Integration, 2022, 83: 12-23.
    [25] WANG ZH, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
    [26] WU ZH H, SONG T T, ZHANG Y B. Quantum k-means algorithm based on Manhattan distance[J]. Quantum Information Processing, 2022, 21(1): 19. doi: 10.1007/s11128-021-03384-7
    [27] JIANG X P, HU X H, HE T T. Identification of the clustering structure in microbiome data by density clustering on the Manhattan distance[J]. Science China Information Sciences, 2016, 59(7): 070104. doi: 10.1007/s11432-016-5587-8
    [28] FU G H, XU F, ZHANG B Y, et al. Stable variable selection of class-imbalanced data with precision-recall criterion[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 171: 241-250. doi: 10.1016/j.chemolab.2017.10.015
    [29] ZHANG Q, LIN Q H, KANG X. Research on image retrieval based on kernel density estimation and fractal coding algorithm[J]. Acta Metrologica Sinica, 2017, 38(3): 284-287. (in Chinese) doi: 10.3969/j.issn.1000-1158.2017.03.07
    [30] WANG J J, CHEN P, XI B, et al. Fast sparse fractal image compression[J]. PLoS One, 2017, 12(9): e0184408. doi: 10.1371/journal.pone.0184408
    [31] ZHA T. Application comparison of textile fabric image retrieval algorithms based on content[J]. Journal of Textile Science &Fashion Technology, 2020, 7(2): 659.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  240
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 修回日期:  2022-11-29
  • 网络出版日期:  2023-04-18

目录

    /

    返回文章
    返回