留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Polarization-multiplexing of a laser based on a bulk Yb:CALGO crystal

JIN Hao-shu LIU Hui XU Si-yuan LU Bao-le BAI Jin-tao

靳昊澍, 刘辉, 许思源, 陆宝乐, 白晋涛. 基于Yb:CALGO晶体激光器的偏振复用[J]. 中国光学(中英文), 2023, 16(6): 1475-1481. doi: 10.37188/CO.EN-2023-0005
引用本文: 靳昊澍, 刘辉, 许思源, 陆宝乐, 白晋涛. 基于Yb:CALGO晶体激光器的偏振复用[J]. 中国光学(中英文), 2023, 16(6): 1475-1481. doi: 10.37188/CO.EN-2023-0005
JIN Hao-shu, LIU Hui, XU Si-yuan, LU Bao-le, BAI Jin-tao. Polarization-multiplexing of a laser based on a bulk Yb:CALGO crystal[J]. Chinese Optics, 2023, 16(6): 1475-1481. doi: 10.37188/CO.EN-2023-0005
Citation: JIN Hao-shu, LIU Hui, XU Si-yuan, LU Bao-le, BAI Jin-tao. Polarization-multiplexing of a laser based on a bulk Yb:CALGO crystal[J]. Chinese Optics, 2023, 16(6): 1475-1481. doi: 10.37188/CO.EN-2023-0005

基于Yb:CALGO晶体激光器的偏振复用

详细信息
  • 中图分类号: O432.1+2

Polarization-multiplexing of a laser based on a bulk Yb:CALGO crystal

doi: 10.37188/CO.EN-2023-0005
Funds: Supported by National Natural Science Foundation of China (No. 62005215); Natural Science Basic Research Program of Shaanxi Province (No. 2019JCW-03); Science and Technology Program of Xi'an (No. 202005YK01)
More Information
    Author Bio:

    JIN Hao-shu (1996—), male, from Zhangjiakou, Hebei Province, master's degree candidate, obtained a bachelor's degree from Shanxi University in 2019, mainly engaged in the research of all-solid-state laser technology. E-mail: 202032252@stumail.nwu.edu.cn

    LIU Hui (1986—), male, from Chenzhou, Hunan Province, associate professor, master supervisor, obtained Ph.D from Chinese Academy of Sciences (National Time Service Center) in 2016, mainly engaged in the research of laser physics and technology. E-mail: liuhui_gzs@nwu.edu.cn

    Corresponding author: liuhui_gzs@nwu.edu.cnbaijint@nwu.edu.cn
  • 摘要:

    基于大增益带宽和高热导率晶体的偏振复用激光技术可以提高双频激光器和双光梳激光器在输出光谱范围和功率方面的性能。本文提出一种基于Yb:CALGO晶体的偏振复用激光器。将两片与光轴成45°角切割的双折射晶体放置在增益晶体的前后两侧形成三明治结构,利用双折射晶体的偏振特性使腔内激光形成只在三明治结构部分具备空间分离其余部分共线的偏振方向互相垂直的两种模式。同时,这种三明治结构既能使单束泵浦光能够自动分离为两束空间分离匹配的泵浦光,也可以使腔内增益晶体放置在腔内模式腰斑位置处,与泵浦光达到更好的模式匹配,提高光泵浦效率。最终测得的激光输出功率达到瓦量级并且斜率效率超过30%。在腔内加入标准具后,实现了频差为太赫兹量级的稳定双频激光运转。

     

  • Figure 1.  Schematic of the laser polarization-multiplexed by sandwiching a Yb:CALGO crystal with two birefringent crystals. LD: fiber-coupled laser diode; DCM1, DCM2: dichroic mirrors; G: Yb:CALGO cryatal; BC1, BC2: birefringent crystals made of YVO4; HR: high reflection concave mirror with a curvature radius of 150 mm; OC: output coupler with a curvature radius of 150 mm; L1, L2: lenses; HWP: half-wave plate; PBS: polarization beam splitter

    Figure 2.  Measurement results of the output power when the laser was operated in single mode. (a) Output power versus the direction of linearized laser polarization. (b) Output power versus absorbed pump power

    Figure 3.  Output power of the laser when the birefringent crystals were inserted into the cavity. (a) Two polarization states exist at the same time; (b) only the ordinary light is pumped; (c) only the extraordinary light is pumped

    Figure 4.  Spectra in different conditions. (a)−(c) show the spectra when no etalon was used, and (d)−(f) show the spectra when an etalon was used; (a) and (d) show the spectra when the o- and e-light coexisted, while (b), (c), (e), (f) show the spectra when only one polarization state was excited

  • [1] BAILI G, MORVAN L, ALOUINI M, et al. Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations[J]. Optics Letters, 2009, 34(21): 3421-3423. doi: 10.1364/OL.34.003421
    [2] PILLET G, MORVAN L, BRUNEL M, et al. Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals[J]. Journal of Lightwave Technology, 2008, 26(15): 2764-2773. doi: 10.1109/JLT.2008.927209
    [3] PAQUET R, BLIN S, MYARA M, et al. Coherent continuous-wave dual-frequency high-Q external-cavity semiconductor laser for GHz-THz applications[J]. Optics Letters, 2016, 41(16): 3751-3754. doi: 10.1364/OL.41.003751
    [4] PUPEIKIS J, WILLENBERG B, CAMENZIND S L, et al. Spatially multiplexed single-cavity dual-comb laser[J]. Optica, 2022, 9(7): 713-716. doi: 10.1364/OPTICA.457787
    [5] WILLENBERG B, PUPEIKIS J, KRÜGER L M, et al. Femtosecond dual-comb Yb: CaF2 laser from a single free-running polarization-multiplexed cavity for optical sampling applications[J]. Optics Express, 2020, 28(20): 30275-30288. doi: 10.1364/OE.403072
    [6] LIAO R Y, TIAN H C, LIU W, et al. Dual-comb generation from a single laser source: principles and spectroscopic applications towards mid-IR—A review[J]. Journal of Physics:Photonics, 2020, 2(4): 042006. doi: 10.1088/2515-7647/aba66e
    [7] DUMONT P, CAMARGO F, DANET J M, et al. Low-noise dual-frequency laser for compact cs atomic clocks[J]. Journal of Lightwave Technology, 2014, 32(20): 3817-3823. doi: 10.1109/JLT.2014.2318179
    [8] SCHELLER M, YARBOROUGH J M, MOLONEY J V, et al. Room temperature continuous wave milliwatt terahertz source[J]. Optics Express, 2010, 18(26): 27112-27117. doi: 10.1364/OE.18.027112
    [9] CODDINGTON I, NEWBURY N, SWANN W. Dual-comb spectroscopy[J]. Optica, 2016, 3(4),doi: 10.1364/optica.3.000414.
    [10] SUH M G, VAHALA K J. Soliton microcomb range measurement[J]. Science, 2018, 359(6378): 884-887. doi: 10.1126/science.aao1968
    [11] ZHANG P, MAO L, ZHANG X J, et al. Compact dual-wavelength vertical-external-cavity surface-emitting laser with simple elements[J]. Optics Express, 2021, 29(11): 16572-16583. doi: 10.1364/OE.423074
    [12] MANJOORAN S, LOIKO P, MAJOR A. A discretely tunable dual-wavelength multi-watt Yb: CALGO laser[J]. Applied Physics B, 2018, 124(1): 13. doi: 10.1007/s00340-017-6873-x
    [13] SCHELLER M, BAKER C W, KOCH S W, et al. High power dual-wavelength VECSEL based on a multiple folded cavity[J]. IEEE Photonics Technology Letters, 2017, 29(10): 790-793. doi: 10.1109/LPT.2017.2685595
    [14] GREDAT G, LIU H, COTXET J, et al. Optimization of laser dynamics for active stabilization of DF-VECSELs dedicated to cesium CPT clocks[J]. Journal of the Optical Society of America B, 2020, 37(4): 1196-1207. doi: 10.1364/JOSAB.389310
    [15] LINK S M, MAAS D J H C, WALDBURGER D, et al. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser[J]. Science, 2017, 356(6343): 1164-1168. doi: 10.1126/science.aam7424
    [16] KOWALCZYK M, STERCZEWSKI Ł, ZHANG X ZH, et al. Dual-comb femtosecond solid-state laser with inherent polarization-multiplexing[J]. Laser &Photonics Reviews, 2021, 15(8): 2000441.
    [17] MANJOORAN S, MAJOR A. Diode-pumped 45 fs Yb: CALGO laser oscillator with 1.7 MW of peak power[J]. Optics Letters, 2018, 43(10): 2324-2327. doi: 10.1364/OL.43.002324
    [18] HAKOBYAN S, WITTWER V J, BROCHARD P, et al. Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate[J]. Optics Express, 2017, 25(17): 20437-20453. doi: 10.1364/OE.25.020437
    [19] KLENNER A, GOLLING M, KELLER U. High peak power gigahertz Yb: CALGO laser[J]. Optics Express, 2014, 22(10): 11884-11891. doi: 10.1364/OE.22.011884
    [20] PETIT J, GOLDNER P, VIANA B. Laser emission with low quantum defect in Yb: CaGdAlO4[J]. Optics Letters, 2005, 30(11): 1345-1347. doi: 10.1364/OL.30.001345
    [21] MODSCHING N, PARADIS C, LABAYE F, et al. Kerr lens mode-locked Yb: CALGO thin-disk laser[J]. Optics Letters, 2018, 43(4): 879-882. doi: 10.1364/OL.43.000879
  • 加载中
图(4)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  276
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 修回日期:  2023-02-27
  • 网络出版日期:  2023-03-30

目录

    /

    返回文章
    返回