Magnetic field sensor utilizing U-Shaped Cavity based on in-fiber Mach–Zehnder interferometer
doi: 10.37188/CO.EN-2023-0015
-
摘要:
本文研制了一种光纤磁场传感器,使用涂有磁流体(MF)的全光纤马赫-曾德尔干涉仪(MZI)的U形腔体进行实验验证。光纤磁场传感器是在两段单模光纤(SMF)之间拼接一段单模光纤形成U型光学腔制造而成的,该设计具有光纤几何关系。由于几何对称性MZI对周围折射率(RI)具有很强的敏感性,灵敏度高达−13588 nm/RIU,且磁流体的折射率对磁场敏感,因此所提结构实现了磁场传感功能。实验结果表明,该传感器磁场灵敏度高达137 pm/Oe,磁场范围从0~250 Oe几乎呈线性。本文所设计的光纤磁场传感器具有体积小、成本低、易于制造、坚固耐用、灵敏度高、重复性好、易于与光纤系统集成等相关优势。
Abstract:An optical fiber magnetic field sensor is proposed and experimentally demonstrated by using a U-shaped cavity based on in-fiber Mach-Zehnder interferometer (MZI) coated with magnetic fluid (MF). The magnetic field sensor is manufactured by splicing a section of single-mode fiber (SMF) between two sections of SMF with designed fiber geometric relationships. As the geometric symmetry MZI is strongly sensitive to the surrounding refractive index (RI) with a high sensitivity up to −13588 nm/RIU and MF’s RI is sensitive to magnetic field, the magnetic field sensing function of the proposed structure is realized. The results show that the magnetic field sensitivity reaches as high as 137 pm/Oe, and the magnetic field range is almost linear from 0 to 250 Oe. The proposed magnetic field sensor has the advantages of small size, low cost, easy to manufacture, robustness, high sensitivity, good repeatability and easy to integrate with fiber optic systems.
-
Key words:
- magnetic field sensor /
- magnetic fluid /
- U-shaped cavity /
- optical sensor
-
-
[1] HORNG H E, CHIEH J J, CHAO Y H, et al. Designing optical-fiber modulators by using magnetic fluids[J]. Optics Letters, 2005, 30(5): 543-545. doi: 10.1364/OL.30.000543 [2] PU SH L, CHEN X F, CHEN Y P, et al. Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face[J]. Applied Physics Letters, 2005, 86(17): 171904. doi: 10.1063/1.1905808 [3] LIU T, CHEN X F, DI Z Y, et al. Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids[J]. Applied Physics Letters, 2007, 91(12): 121116. doi: 10.1063/1.2787970 [4] ZU P, CHAN C C, LEW W S, et al. Magneto-optical fiber sensor based on magnetic fluid[J]. Optics Letters, 2012, 37(3): 398-400. doi: 10.1364/OL.37.000398 [5] LI X L, DING H. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid[J]. Optics Letters, 2012, 37(24): 5187-5189. doi: 10.1364/OL.37.005187 [6] MIAO Y P, WU J X, LIN W, et al. Magnetic field tunability of optical microfiber taper integrated with ferrofluid[J]. Optics Express, 2013, 21(24): 29914-29920. doi: 10.1364/OE.21.029914 [7] LAYEGHI A, LATIFI H, FRAZAO O. Magnetic field sensor based on nonadiabatic tapered optical fiber with magnetic fluid[J]. IEEE Photonics Technology Letters, 2014, 26(19): 1904-1907. doi: 10.1109/LPT.2014.2341662 [8] ZHENG Y Z, DONG X Y, CHAN C C, et al. Optical fiber magnetic field sensor based on magnetic fluid and microfiber mode interferometer[J]. Optics Communications, 2015, 336: 5-8. doi: 10.1016/j.optcom.2014.09.026 [9] MIAO Y P, ZHANG K L, LIU B, et al. Ferrofluid-infiltrated microstructured optical fiber long-period grating[J]. IEEE Photonics Technology Letters, 2013, 25(3): 306-309. doi: 10.1109/LPT.2012.2231669 [10] GAO R, JIANG Y, ABDELAZIZ S. All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers[J]. Optics Letters, 2013, 38(9): 1539-1541. doi: 10.1364/OL.38.001539 [11] WO J H, WANG G H, CUI Y, et al. Refractive index sensor using microfiber-based Mach–Zehnder interferometer[J]. Optics Letters, 2012, 37(1): 67-69. doi: 10.1364/OL.37.000067 [12] TIAN Z B, YAM S S H, BARNES J, et al. Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers[J]. IEEE Photonics Technology Letters, 2008, 20(8): 626-628. doi: 10.1109/LPT.2008.919507 [13] XUE Y, YU Y S, YANG R, et al. Ultrasensitive temperature sensor based on an isopropanol-sealed optical microfiber taper[J]. Optics Letters, 2013, 38(8): 1209-1211. doi: 10.1364/OL.38.001209 [14] LUO Y, LEI X Q, SHI F Q, et al. A novel optical fiber magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid[J]. Optik, 2018, 174: 252-258. doi: 10.1016/j.ijleo.2018.08.021 [15] LEI X Q, XU Y CH, YU Y T, et al. Fiber in-line magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid[J]. Optoelectronics Letters, 2019, 15(1): 43-47. doi: 10.1007/s11801-019-8087-4 [16] LI ZH Y, LIAO CH R, SONG J, et al. Ultrasensitive magnetic field sensor based on an in-fiber Mach–Zehnder interferometer with a magnetic fluid component[J]. Photonics Research, 2016, 4(5): 197-201. doi: 10.1364/prj.4.000197 [17] CAI SH H, SERGEEV M, PETROV A, et al. Highly sensitive vector magnetic field sensors based on fiber Mach–Zehnder interferometers[J]. Optics Communications, 2022, 524: 128725. doi: 10.1016/j.optcom.2022.128725 [18] ZHANG J, WANG CH, CHEN Y K, et al. Fiber structures and material science in optical fiber magnetic field sensors[J]. Frontiers of Optoelectronics, 2022, 15(1): 34. doi: 10.1007/s12200-022-00037-0 [19] GAO SH CH, ZHANG W G, GENG P CH, et al. Highly sensitive in-fiber refractive index sensor based on down-bitaper seeded up-bitaper pair[J]. IEEE Photonics Technology Letters, 2012, 24(20): 1878-1881. doi: 10.1109/LPT.2012.2217949 [20] GAO SH CH, ZHANG W G, ZHANG H, et al. Reconfigurable and ultra-sensitive in-line Mach-Zehnder interferometer based on the fusion of microfiber and microfluid[J]. Applied Physics Letters, 2015, 106(8): 084103. doi: 10.1063/1.4913921 [21] KONSTANTAKI M, CANDIANI A, PISSADAKIS S. Optical fibre long period grating spectral actuators utilizing ferrofluids as outclading overlayers[J]. Journal of the European Optical Society - Rapid Publications, 2011, 6: 11007. doi: 10.2971/jeos.2011.11007 [22] DAI J X, YANG M H, LI X B, et al. Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating[J]. Optical Fiber Technology, 2011, 17(3): 210-213. doi: 10.1016/j.yofte.2011.02.004 [23] DONG SH H, PU SH L, HUANG J. Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry-Pérot fiber interferometers[J]. Applied Physics Letters, 2013, 103(11): 111907. doi: 10.1063/1.4821104 [24] ZU P, CHAN C C, LEW W S, et al. Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber[J]. IEEE Photonics Journal, 2012, 4(2): 491-498. doi: 10.1109/JPHOT.2012.2192473 [25] DENG M, SUN X K, HAN M, et al. Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid[J]. Applied Optics, 2013, 52(4): 734-741. doi: 10.1364/AO.52.000734 [26] YANG S Y, CHIEH J J, HORNG H E, et al. Origin and applications of magnetically tunable refractive index of magnetic fluid films[J]. Applied Physics Letters, 2004, 84(25): 5204-5206. doi: 10.1063/1.1765201 [27] LUO L F, PU SH L, TANG J L, et al. Reflective all-fiber magnetic field sensor based on microfiber and magnetic fluid[J]. Optics Express, 2015, 23(14): 18133-18142. doi: 10.1364/OE.23.018133 [28] LI J, FAN P CH, TIAN ZH, et al. Potential for simultaneous measurement of magnetic field and temperature utilizing fiber taper modal interferometer and magnetic fluid[J]. IEEE Photonics Journal, 2016, 8(6): 6805609. [29] GU SH F, SUN W, LI M, et al. Simultaneous measurement of magnetic field and temperature based on photonic crystal fiber plasmonic sensor with dual-polarized modes[J]. Optik, 2022, 259: 169030. doi: 10.1016/j.ijleo.2022.169030