留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Resistive plasmonic absorbing structures for stability enhancement of broadband absorption

SHEN Yang LU Zhi-feng GUO Ya-kun LONG Yun-fei HE Rui Zhang Zhe-rui

沈杨, 芦志峰, 郭亚坤, 龙云飞, 何睿, 张哲瑞. 可实现宽带吸波稳定性提升的新型电阻等离子吸波结构[J]. 中国光学(中英文), 2024, 17(3): 683-692. doi: 10.37188/CO.EN-2023-0022
引用本文: 沈杨, 芦志峰, 郭亚坤, 龙云飞, 何睿, 张哲瑞. 可实现宽带吸波稳定性提升的新型电阻等离子吸波结构[J]. 中国光学(中英文), 2024, 17(3): 683-692. doi: 10.37188/CO.EN-2023-0022
SHEN Yang, LU Zhi-feng, GUO Ya-kun, LONG Yun-fei, HE Rui, Zhang Zhe-rui. Resistive plasmonic absorbing structures for stability enhancement of broadband absorption[J]. Chinese Optics, 2024, 17(3): 683-692. doi: 10.37188/CO.EN-2023-0022
Citation: SHEN Yang, LU Zhi-feng, GUO Ya-kun, LONG Yun-fei, HE Rui, Zhang Zhe-rui. Resistive plasmonic absorbing structures for stability enhancement of broadband absorption[J]. Chinese Optics, 2024, 17(3): 683-692. doi: 10.37188/CO.EN-2023-0022

可实现宽带吸波稳定性提升的新型电阻等离子吸波结构

详细信息
  • 中图分类号: TB34

Resistive plasmonic absorbing structures for stability enhancement of broadband absorption

doi: 10.37188/CO.EN-2023-0022
Funds: Supported by National Natural Science Foundation of China (No. 61471388, No. 61801509); National Key R & D Program of China (No. 2017YFA0700201)
More Information
    Author Bio:

    Shen Yang (1990—), Ph.D., Engineer, Satellite Maritime Tracking and Controlling Department. His research interests concentrate on the basic theory and application of metamaterials in the field of electromagnetic waves, materials engineering, and surface plasmons. E-mail: shenyang508@126.com

    Corresponding author: shenyang508@126.com
  • 摘要:

    电阻型吸波结构具有优异的宽带电磁吸波性能,但电阻片方阻值对吸波结构宽带电磁吸波性能影响较大,且在样品制备过程中较难精确控制。本文通过在电阻型吸波结构表面加载周期性人工等离子结构,利用宽频带内激发的多重等离子谐振,实现高效宽带色散调控,进而获得电阻型吸波材料表面局域场增强效应,提升宽带电磁吸波的稳定性。仿真与试验结果表明,当电阻片方阻值在100~250 Ω/sq内变化时,该电阻型等离子吸波结构在7.8~40.0 GHz频段内的吸收效率高于90%以上,具有连续宽带电磁吸波能力。该设计方案提供了一种加载人工等离子结构用于强化吸波超材料综合性能的设计思路,对复合型吸波超材料设计具有一定的启发。

     

  • Figure 1.  (a) Schematic of no-planar resistive MA unit cell; (b) prospective view of no-planar resistive MA; (c) simulated absorption spectra of no-planar resistive MA under the normal incidence

    Figure 2.  (a) Schematic diagram and (b) dispersion relationship of the bent-wire-shaped structure

    Figure 3.  (a) Schematic diagram of bent-wire-shaped PS; (b) reflection and transmission spectra of bent-wire-shaped PS under the normal incidence; (c) absorption spectra of bent-wire-shaped PS

    Figure 4.  (a) Schematic diagram of resistive PAS unit cell; (b) prospective view of resistive PAS; (c) simulated absorption spectra of the proposed resistive PAS under the normal incidence

    Figure 5.  Electric field Ey distributions of (a) resistive PAS and (b) bent-wire-shaped PS in the y-z plane at the frequencies of 10.0, 15.0, 20.0, and 25.0 GHz

    Figure 6.  Fabricated sample of resistive PAS with the ohmic sheet fz=100 Ω/sq

    Figure 7.  Simulated and measured absorption spectra of resistive PAS with an ohmic sheet (a) fz=100 Ω/sq and (b) fz=250 Ω/sq

    Table  1.   Cut-off frequencies of the bent-wire-shaped structure with different lengths ${\boldsymbol{l }}$

    l=7.0 mm l=8.0 mm l=9.0 mm l=10.0 mm
    The first cut-off
    frequency/GHz
    14.5 13.1 11.8 10.6
    The second cut-off
    frequency/GHz
    24.9 23.4 21.8 20.4
    下载: 导出CSV
  • [1] WATTS C M, LIU X L, PADILLA W J. Metamaterial electromagnetic wave absorbers[J]. Advanced Materials, 2012, 24(23): OP98-OP120.
    [2] GLYBOVSKI S B, TRETYAKOV S A, BELOV P A, et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 2016, 634: 1-72. doi: 10.1016/j.physrep.2016.04.004
    [3] TONG J K, HSU W C, HUANG Y, et al. Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics[J]. Scientific Reports, 2015, 5: 10661. doi: 10.1038/srep10661
    [4] ATALLA M R M, ATTIA M T. On the broadband continuous polarization-independent excitation of surface-plasmon-polariton waves for energy-harvesting applications[J]. Journal of the Optical Society of America B, 2017, 34(2): 270-278. doi: 10.1364/JOSAB.34.000270
    [5] WANG ZH Y, TONG ZH, YE Q X, et al. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage[J]. Nature Communications, 2017, 8(1): 1478. doi: 10.1038/s41467-017-01618-w
    [6] DIEM M, KOSCHNY T, SOUKOULIS C M. Wide-angle perfect absorber/thermal emitter in the terahertz regime[J]. Physical Review B, 2008, 79(3): 033101.
    [7] MASON J A, SMITH S, WASSERMAN D. Strong absorption and selective thermal emission from a midinfrared metamaterial[J]. Applied Physics Letters, 2011, 98(24): 241105. doi: 10.1063/1.3600779
    [8] SHEN Y, ZHANG J Q, PANG Y Q, et al. Transparent broadband metamaterial absorber enhanced by water-substrate incorporation[J]. Optics Express, 2018, 26(12): 15665-15674. doi: 10.1364/OE.26.015665
    [9] LANDY N I, BINGHAM C M, TYLER T, et al. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging[J]. Physical Review B, 2009, 79(12): 125104. doi: 10.1103/PhysRevB.79.125104
    [10] BAKIR M, KARAASLAN M, UNAL E, et al. Microwave metamaterial absorber for sensing applications[J]. Opto-Electronics Review, 2017, 25(4): 318-325. doi: 10.1016/j.opelre.2017.10.002
    [11] LIU N, MESCH M, WEISS T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7): 2342-2348. doi: 10.1021/nl9041033
    [12] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402
    [13] TAO H, BINGHAM C M, PILON D, et al. A dual band terahertz metamaterial absorber[J]. Journal of Physics D:Applied Physics, 2010, 43(22): 225102. doi: 10.1088/0022-3727/43/22/225102
    [14] CUI Y X, XU J, HUNG FUNG K, et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters, 2011, 99(25): 253101. doi: 10.1063/1.3672002
    [15] HUANG L, CHOWDHURY D R, RAMANI S, et al. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J]. Optics Letters, 2012, 37(2): 154-156. doi: 10.1364/OL.37.000154
    [16] TUNG B S, KHUYEN B X, VAN DUNG N, et al. Multi-band near-perfect absorption via the resonance excitation of dark meta-molecules[J]. Optics Communications, 2015, 356: 362-367. doi: 10.1016/j.optcom.2015.08.022
    [17] CHENG Y ZH, CHENG ZH Z, MAO X S, et al. Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure[J]. Materials, 2017, 10(11): 1241. doi: 10.3390/ma10111241
    [18] ZHAO L, LIU H, HE ZH H, et al. Design of multi-narrowband metamaterial perfect absorbers in near-infrared band based on resonators asymmetric method and modified resonators stacked method[J]. Optics Communications, 2018, 420: 95-103. doi: 10.1016/j.optcom.2018.03.051
    [19] LI SH Y, AI X CH, WU R H, et al. Enhancement of multi-band absorption based on compound structure metamaterials[J]. Optics & Laser Technology, 2019, 115: 239-245.
    [20] MAO Q J, FENG CH Z, YANG Y ZH. Design of tunable multi-band metamaterial perfect absorbers based on magnetic polaritons[J]. Plasmonics, 2019, 14(2): 389-396. doi: 10.1007/s11468-018-0816-1
    [21] HANNAN S, ISLAM M T, SAHAR N M, et al. Modified-segmented split-ring based polarization and angle-insensitive multi-band metamaterial absorber for X, Ku and K band applications[J]. IEEE Access, 2020, 8: 144051-144063. doi: 10.1109/ACCESS.2020.3013011
    [22] GOMON D, SEDYKH E, RODRÍGUEZ S, et al. Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications[J]. Chinese Optics, 2018, 11(1): 47-59.
    [23] SHEN Y, PEI ZH B, PANG Y Q, et al. Phase random metasurfaces for broadband wide-angle radar cross section reduction[J]. Microwave and Optical Technology Letters, 2015, 57(12): 2813-2819. doi: 10.1002/mop.29444
    [24] TRAN M C, PHAM V H, HO T H, et al. Broadband microwave coding metamaterial absorbers[J]. Scientific Reports, 2020, 10(1): 1810. doi: 10.1038/s41598-020-58774-1
    [25] MUDACHATHI R, TANAKA T. 3D conical helix metamaterial–based isotropic broadband perfect light absorber[J]. Optics Express, 2019, 27(19): 26369-26376. doi: 10.1364/OE.27.026369
    [26] CUI Y X, FUNG K H, XU J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443-1447. doi: 10.1021/nl204118h
    [27] DING F, CUI Y X, GE X CH, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10): 103506. doi: 10.1063/1.3692178
    [28] LIU SH, CHEN H B, CUI T J. A broadband terahertz absorber using multi-layer stacked bars[J]. Applied Physics Letters, 2015, 106(15): 151601. doi: 10.1063/1.4918289
    [29] JI SH J, JIANG CH X, ZHAO J, et al. An ultra-broadband metamaterial absorber with high absorption rate throughout the X-band[J]. Physica Status Solidi (B), 2019, 256(11): 1900069. doi: 10.1002/pssb.201900069
    [30] SHEN Y, PEI ZH B, PANG Y Q, et al. An extremely wideband and lightweight metamaterial absorber[J]. Journal of Applied Physics, 2015, 117(22): 224503. doi: 10.1063/1.4922421
    [31] TANG J Y, XIAO ZH Y, XU K K, et al. Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle[J]. Plasmonics, 2016, 11(5): 1393-1399. doi: 10.1007/s11468-016-0189-2
    [32] HU D W, CAO J, LI W, et al. Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators[J]. Advanced Optical Materials, 2017, 5(13): 1700109. doi: 10.1002/adom.201700109
    [33] YE D X, WANG ZH Y, XU K W, et al. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption[J]. Physical Review Letters, 2013, 111(18): 187402. doi: 10.1103/PhysRevLett.111.187402
    [34] ZHANG H F, JING Y, ZHANG H, et al. Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors[J]. Optical Materials Express, 2018, 8(8): 2103-2113. doi: 10.1364/OME.8.002103
    [35] MA X, TIAN F, LI X Y, et al. Broadband with enhanced oblique incidence metamaterial absorber[J]. Materials Research Express, 2020, 7(9): 095803. doi: 10.1088/2053-1591/abba9e
    [36] PANG Y Q, WANG J F, MA H, et al. Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption[J]. Scientific Reports, 2016, 6: 29429. doi: 10.1038/srep29429
    [37] SHEN Y, ZHANG J Q, MENG Y Y, et al. Merging absorption bands of plasmonic structures via dispersion engineering[J]. Applied Physics Letters, 2018, 112(25): 254103. doi: 10.1063/1.5040067
    [38] SHEN Y, ZHANG J Q, WANG J F, et al. Multistage dispersion engineering in a three-dimensional plasmonic structure for outstanding broadband absorption[J]. Optical Materials Express, 2019, 9(3): 1539-1550. doi: 10.1364/OME.9.001539
    [39] SHEN Y, ZHANG J Q, WANG W J, et al. Overcoming the pixel-density limit in plasmonic absorbing structure for broadband absorption enhancement[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 674-678. doi: 10.1109/LAWP.2019.2900846
    [40] ROZANOV K N, STAROSTENKO S N. Numerical study of bandwidth of radar absorbers[J]. The European Physical Journal Applied Physics, 1999, 8(2): 147-151. doi: 10.1051/epjap:1999240
    [41] ROZANOV K N. Ultimate thickness to bandwidth ratio of radar absorbers[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230-1234. doi: 10.1109/8.884491
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  91
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-02
  • 修回日期:  2023-10-07
  • 录用日期:  2023-12-18
  • 网络出版日期:  2023-12-28

目录

    /

    返回文章
    返回