留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase distortion correction of fringe patterns in spaceborne Doppler asymmetric spatial heterodyne interferometry

PEI Hui-yi JIANG Lun WANG Jin-jiang CUI Yong FANG Yuan-xiang ZHANG Jia-ming CHEN Ci

裴惠熠, 江伦, 王锦疆, 崔勇, 方远翔, 张家铭, 陈词. 星载多普勒非对称空间外差干涉测量中条纹图案的相位畸变校正[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0007
引用本文: 裴惠熠, 江伦, 王锦疆, 崔勇, 方远翔, 张家铭, 陈词. 星载多普勒非对称空间外差干涉测量中条纹图案的相位畸变校正[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0007
PEI Hui-yi, JIANG Lun, WANG Jin-jiang, CUI Yong, FANG Yuan-xiang, ZHANG Jia-ming, CHEN Ci. Phase distortion correction of fringe patterns in spaceborne Doppler asymmetric spatial heterodyne interferometry[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0007
Citation: PEI Hui-yi, JIANG Lun, WANG Jin-jiang, CUI Yong, FANG Yuan-xiang, ZHANG Jia-ming, CHEN Ci. Phase distortion correction of fringe patterns in spaceborne Doppler asymmetric spatial heterodyne interferometry[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0007

星载多普勒非对称空间外差干涉测量中条纹图案的相位畸变校正

详细信息
  • 中图分类号: O482.31

Phase distortion correction of fringe patterns in spaceborne Doppler asymmetric spatial heterodyne interferometry

doi: 10.37188/CO.EN-2024-0007
Funds: Supported by Jilin Province Science and Technology Development Plan Project (No. 20230201006GX)
More Information
    Author Bio:

    JIANG Lun (1984—), male, from Huang-gang, Hubei Province, Ph.D, researcher/doctoral supervisor, obtained his Ph.D from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 2012, mainly engaged in optical system design, space optics and space optical communication technology research. E-mail: jlciomp@163.com

    Corresponding author: jlciomp@163.com
  • 摘要:

    作为观测大气风的先进技术,星载多普勒非对称空间外差(DASH)干涉仪也面临着与相位畸变相关的挑战,特别是在临边探测场景中。本文讨论了星载DASH干涉仪的干涉图建模和相位畸变校正技术。对临边观测中有与无多普勒频移的相位畸变干涉图进行了建模,并通过数值模拟验证了解析表达式的有效性。仿真结果表明,在使用洋葱皮反演算法处理相位失真干涉图时,误差会逐层传播。相比之下,相位畸变校正算法可以实现有效的校正。该相位校正方法可成功应用于星载DASH干涉仪干涉图中的相位畸变校正,为提高其测量精度提供了可行的解决方案。

     

  • Figure 1.  Schematic diagram of DASH interferometer.

    Figure 2.  Schematic diagram of limb sounding for spaceborne DASH interferometer. The angle between the tangent of the intersection of the $m{\text{th}}$ LOS and the $n{\text{th}}$ layer is ${\alpha _{mn}}$.

    Figure 3.  The flowchart of phase distortion correction.

    Figure 4.  Panel (a) shows a simulated non Doppler shift tilted fringe interferogram, panel (b) is the correction for panel (a), Panel (c) shows a simulated Doppler shift tilted fringe interferogram, panel (d) is the correction for panel (c). The vertical axis denotes the tangent altitude, and the horizontal axis represents the optical path difference. The simulated images have been vertically stretched, with the actual image proportions being $82 \times 1024$.

    Figure 5.  Comparison between input wind profile and retrieved wind profile. The red line represents the input wind profile, while the blue line represents the retrieved wind profile. Panel (a) shows the data before phase distortion correction, and panel (b) shows the data after phase distortion correction.

    Figure 6.  After phase distortion correction, the phase changes caused by different angles ${\beta _1}$ in the residual phase distortion terms across different detector rows.

    Table  1.   Parameters for simulation.

    ParametersValues
    Wavelengths557.7 nm
    Littrow wavelengths557.137 nm
    OPD offset20.363 mm
    Detector resolution82×1024
    Grating groove density600 grooves/mm
    Diffraction order1
    Pixel pitch13 µm
    下载: 导出CSV
  • [1] GIRAUD A, PETIT M. Ionospheric Techniques and Phenomena[M]. Dordrecht: Springer, 1978. (查阅网上资料, 请确认年份信息) .
    [2] VADAS S L, LIU H L. Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A10): A10310.
    [3] WANG W B, BURNS A G, LIU J. Upper thermospheric winds: forcing, variability, and effects[M]//WANG W B, ZHANG Y L, PAXTON L J. Upper Atmosphere Dynamics and Energetics. Hoboken: American Geophysical Union, 2021: 41-63.
    [4] MERIWETHER J W. Studies of thermospheric dynamics with a Fabry–Perot interferometer network: a review[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(13): 1576-1589. doi: 10.1016/j.jastp.2005.11.014
    [5] MAKELA J J, BAUGHMAN M, NAVARRO L A, et al. Validation of ICON-MIGHTI thermospheric wind observations: 1. Nighttime red-line ground-based fabry-perot interferometers[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028726. doi: 10.1029/2020JA028726
    [6] WEI D K. Development of an optical instrument for the observation of neutral winds in Earth's upper atmosphere[D]. Wuppertal: Bergische Universität, 2020.
    [7] ENGLERT C R, HARLANDER J M, BABCOCK D D, et al. Doppler asymmetric spatial heterodyne spectroscopy (DASH): an innovative concept for measuring winds in planetary atmospheres[J]. Proceedings of SPIE, 2006, 6303: 63030T. doi: 10.1117/12.681704
    [8] ENGLERT C R, BABCOCK D D, HARLANDER J M. Doppler asymmetric spatial heterodyne spectroscopy (DASH): concept and experimental demonstration[J]. Applied Optics, 2007, 46(29): 7297-7307. doi: 10.1364/AO.46.007297
    [9] WEI D K, ZHU Y J, LIU J L, et al. Thermally stable monolithic Doppler asymmetric spatial heterodyne interferometer: optical design and laboratory performance[J]. Optics Express, 2020, 28(14): 19887-19900. doi: 10.1364/OE.394101
    [10] ENGLERT C R, HARLANDER J M, MARR K D, et al. Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI) on-orbit wind observations: data analysis and instrument performance[J]. Space Science Reviews, 2023, 219(3): 27. doi: 10.1007/s11214-023-00971-1
    [11] ENGLERT C R, HARLANDER J M, CARDON J G, et al. Correction of phase distortion in spatial heterodyne spectroscopy[J]. Applied Optics, 2004, 43(36): 6680-6687. doi: 10.1364/AO.43.006680
    [12] ENGLERT C R, HARLANDER J M, EMMERT J T, et al. Initial ground-based thermospheric wind measurements using Doppler asymmetric spatial heterodyne spectroscopy (DASH)[J]. Optics Express, 2010, 18(26): 27416-27430. doi: 10.1364/OE.18.027416
    [13] HARLANDER J M, ENGLERT C R, MARR K D, et al. On the uncertainties in determining fringe phase in Doppler asymmetric spatial heterodyne spectroscopy[J]. Applied Optics, 2019, 58(13): 3613-3619. doi: 10.1364/AO.58.003613
    [14] WEI D K, GONG Q CH, CHEN Q Y, et al. Modeling and correction of fringe patterns in Doppler asymmetric spatial heterodyne interferometry[J]. Applied Optics, 2022, 61(35): 10528-10537. doi: 10.1364/AO.473147
    [15] HARDING B J, MAKELA J J, ENGLERT C R, et al. The MIGHTI wind retrieval algorithm: description and verification[J]. Space Science Reviews, 2017, 212(1): 585-600.
    [16] WU Y J J, HARDING B J, TRIPLETT C C, et al. Errors from asymmetric emission rate in spaceborne, limb sounding doppler interferometry: a correction algorithm with application to ICON/MIGHTI[J]. Earth and Space Science, 2020, 7(10): e2020EA001164. doi: 10.1029/2020EA001164
    [17] HARLANDER J, REYNOLDS R J, ROESLER F L. Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths[J]. The Astrophysical Journal, 1992, 396(2): 730-740.
    [18] ENGLERT C R, HARLANDER J M, BROWN C M, et al. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): instrument design and calibration[J]. Space Science Reviews, 2017, 212(1-2): 553-584. doi: 10.1007/s11214-017-0358-4
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  82
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-03
  • 修回日期:  2024-06-25
  • 录用日期:  2024-08-23
  • 网络出版日期:  2024-10-22

目录

    /

    返回文章
    返回