留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modeling of piezo-positioning system and sliding mode inverse compensation control

LI Zhi-bin XIN Yuan-ze ZHANG Jian-qiang SUN Chong-shang

李智斌, 辛源泽, 张建强, 孙崇尚. 压电定位系统建模及滑模逆补偿控制[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0012
引用本文: 李智斌, 辛源泽, 张建强, 孙崇尚. 压电定位系统建模及滑模逆补偿控制[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0012
LI Zhi-bin, XIN Yuan-ze, ZHANG Jian-qiang, SUN Chong-shang. Modeling of piezo-positioning system and sliding mode inverse compensation control[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0012
Citation: LI Zhi-bin, XIN Yuan-ze, ZHANG Jian-qiang, SUN Chong-shang. Modeling of piezo-positioning system and sliding mode inverse compensation control[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0012

压电定位系统建模及滑模逆补偿控制

详细信息
  • 中图分类号: O482.31

Modeling of piezo-positioning system and sliding mode inverse compensation control

doi: 10.37188/CO.EN-2024-0012
Funds: Supported by National Natural Science Foundation of China (No. U23A20336, No. 52227811, No. 61933006); Natural Science Foundation of Shandong Province (No. ZR2021QF117, No. ZR2021QF140)
More Information
    Author Bio:

    LI Zhi-bin (1965—), male, born in Bazhong, Sichuan Province, Ph.D., professor, doctoral supervisor. He obtained his Ph.D. from Tsinghua University in 2003. He is currently a Professor at College of Electrical Engineering and Automation, Shandong University of Science and Technology. His main research interests include modeling and control of complex system dynamics. E-mail: zhibin.li@sdust.edu.cn

    ZHANG Jian-qiang (1992—), male, born in Qingzhou, Shandong Province, Ph.D., assistant professor at Center for Advanced Control and Smart Operations, Nanjing University. He obtained his Ph.D. from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 2020. His main research focuses on laser communication servo systems, robust control, and model identification. E-mail: zhangjq7170@163.com

    Corresponding author: zhangjq7170@163.com
  • 摘要:

    为了提高压电定位系统(Piezo-positioning system)的控制性能,对迟滞特性产生的影响及其补偿控制方法进行了研究。利用Hammerstein模型表征压电陶瓷定位器的动态迟滞非线性特性,分别以Prandtl-Ishlinskii(P-I)模型和Hankel矩阵系统辨识法求得的模型表示Hammerstein模型的静态非线性部分和动态线性部分。此模型对于200 Hz以内的典型输入频率具有较好的泛化能力。在此基础上,还提出了基于P-I逆模型与积分增广的滑模逆补偿跟踪控制策略。实验结果表明,相较于PID逆补偿控制和无逆补偿的滑模控制,滑模逆补偿控制具有更加理想的阶跃响应,无超调且调节时间仅为6.2 ms,在频域内系统闭环跟踪带宽达到119.9 Hz,且扰动抑制带宽达到86.2 Hz。所提控制策略实现了迟滞非线性的有效补偿,提高了压电定位系统的跟踪精度与抗扰性能。

     

  • Figure 1.  Hysteresis characteristic curves

    Figure 2.  Play operator

    Figure 3.  Hammerstein model structure

    Figure 4.  Experimental platform of piezo-positioning system

    Figure 5.  Modeling and measured hysteresis curves

    Figure 6.  Input and output data of piezo-positioning system

    Figure 7.  Singular value distribution

    Figure 8.  Comparison diagrams of frequency response

    Figure 9.  Block diagram of P-I inverse model feed forward control

    Figure 10.  Model performance adjustment effect

    Figure 11.  Block diagram of sliding mode control of piezo-positioning system with inverse compensation

    Figure 12.  Structural block diagram of piezo-positioning actuator control system

    Figure 13.  Control effect fitting diagram

    Figure 14.  System step response curve

    Figure 15.  Closed-loop frequency characteristic curve

    Figure 16.  Disturbance rejection magnitude-frequency characteristic curves for three control schemes

    Table  1.   Model test errors at different frequencies

    Frequency (Hz) RMSE (μm) RE
    1 0.1835 0.0121
    10 0.3141 0.0214
    30 0.3538 0.0244
    50 0.3106 0.0219
    70 0.2557 0.0185
    100 0.2289 0.0173
    130 0.2572 0.0201
    160 0.3717 0.0297
    200 0.4345 0.0365
    下载: 导出CSV
  • [1] VASILJEV P, MAZEIKA D, KULVIETIS G. Modelling and analysis of omni-directional piezoelectric actuator[J]. Journal of Sound and Vibration, 2007, 308(3-5): 867-878. doi: 10.1016/j.jsv.2007.03.074
    [2] BROKATE M, SPREKELS J. Hysteresis and Phase Transitions[M]. New York: Springer, 1996.
    [3] LEE S H, ROYSTON T J, FRIEDMAN G. Modeling and compensation of hysteresis in piezoceramic transducers for vibration control[J]. Journal of Intelligent Material Systems and Structures, 2000, 11(10): 781-790. doi: 10.1106/GQLJ-JGEU-MHG1-7JDF
    [4] JILES D, ATHERTON D. Ferromagnetic hysteresis[J]. IEEE Transactions on Magnetics, 1983, 19(5): 2183-2185. doi: 10.1109/TMAG.1983.1062594
    [5] AL JANAIDEH M, RAKHEJA S, SU CH Y. An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 734-744. doi: 10.1109/TMECH.2010.2052366
    [6] LI ZH, SHAN J J, GABBERT U. Inverse compensation of hysteresis using Krasnoselskii-Pokrovskii model[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2): 966-971. doi: 10.1109/TMECH.2018.2805761
    [7] WANG X H, SUN T. Preisach modeling of hysteresis for fast tool servo system[J]. Optics and Precision Engineering, 2009, 17(6): 1421-1425.
    [8] WONG P K, XU Q S, VONG CH M, et al. Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine[J]. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1988-2001. doi: 10.1109/TIE.2011.2166235
    [9] DONG R L, TAN Y H, CHEN H, et al. A neural networks based model for rate-dependent hysteresis for piezoceramic actuators[J]. Sensors and Actuators A: Physical, 2008, 143(2): 370-376. doi: 10.1016/j.sna.2007.11.023
    [10] MAO J Q, DING H SH. Intelligent modeling and control for nonlinear systems with rate-dependent hysteresis[J]. Science in China Series F: Information Sciences, 2009, 52(4): 656-673. doi: 10.1007/s11432-009-0026-8
    [11] QIN Y X, HU D J. Nonlinear modeling for piezoelectric actuators[J]. Journal of Shanghai Jiaotong University, 2004, 38(8): 1334-1336,1341. (in Chinese). doi: 10.3321/j.issn:1006-2467.2004.08.027
    [12] HAN T P, LI G P, SHEN J. Study on accurate positioning technology of piezoelectric ceramics micro-displacement actuator[J]. Transducer and Microsystem Technologies, 2010, 29(2): 51-53. (in Chinese). doi: 10.3969/j.issn.1000-9787.2010.02.016
    [13] SUN T, LI G P, SUN H Y. Accurate positioning and control of piezoelectric actuator based on Duhem model and inverse model[J]. Journal of Ningbo University (NSEE), 2017, 30(1): 13-17. (in Chinese).
    [14] LI L, LIU X D, WANG W, et al. Generalized nonlinear Preisach model for hysteresis nonlinearity of piezoceramic actuator and its numerical implementation[J]. Optics and Precision Engineering, 2007, 15(5): 706-712. (in Chinese).
    [15] AL JANAIDEH M, SU CH Y, RAKHEJA S. Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators[J]. Smart Materials and Structures, 2008, 17(3): 035026. doi: 10.1088/0964-1726/17/3/035026
    [16] XIAO SH L, LI Y M. Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model[J]. IEEE Transactions on Control Systems Technology, 2013, 21(5): 1549-1557. doi: 10.1109/TCST.2012.2206029
    [17] LIU Y K, LÜ F R, GAO SH J, et al. Compensation of hysteresis effect of piezoelectric fast steering mirror in dynamic target tracking of ground-based large aperture telescope system[J]. Optics and Precision Engineering, 2022, 30(23): 3081-3089. (in Chinese). doi: 10.37188/OPE.20223023.3081
    [18] AL JANAIDEH M, RAKOTONDRABE M, AL-DARABSAH I, et al. Internal model-based feedback control design for inversion-free feedforward rate-dependent hysteresis compensation of piezoelectric cantilever actuator[J]. Control Engineering Practice, 2018, 72: 29-41. doi: 10.1016/j.conengprac.2017.11.001
    [19] WANG Q Q, SU CH Y, TAN Y H. On the control of plants with hysteresis: overview and a Prandtl-Ishlinskii hysteresis based control approach[J]. Acta Automatica Sinica, 2005, 31(1): 92-104.
    [20] ZHANG J Q, SUN CH SH, WU J B, et al. System identification and balanced truncation of fast steering mirror for laser communication[J]. Control Theory & Applications, 2023: 1-9. (in Chinese).
    [21] LI ZH B, LI L, ZHANG J Q, et al. System modeling and sliding mode control of dual-axis voice coil actuator fast steering mirror[J]. Optics and Precision Engineering, 2023, 31(24): 3580-3594. (in Chinese). doi: 10.37188/OPE.20233124.3580
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  43
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-08
  • 录用日期:  2024-05-15
  • 网络出版日期:  2024-05-25

目录

    /

    返回文章
    返回