留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Widely-wavelength-tunable brillouin fiber laser with improved optical signal-to-noise ratio based on parity-time symmetric and saturable absorption effect

LIU Yi JIANG Kai FANG Xin-yue YOU Ya-jun HE Wen-jun HOU Jia-xin HAN Xue-feng CHOU Xiu-jian

刘毅, 江恺, 房新岳, 游亚军, 贺文君, 侯甲欣, 韩学锋, 丑修建. 基于宇称时间对称与饱和吸收效应的宽可调谐高光信噪比布里渊光纤激光器[J]. 中国光学(中英文), 2024, 17(5): 1244-1253. doi: 10.37188/CO.EN-2024-0016
引用本文: 刘毅, 江恺, 房新岳, 游亚军, 贺文君, 侯甲欣, 韩学锋, 丑修建. 基于宇称时间对称与饱和吸收效应的宽可调谐高光信噪比布里渊光纤激光器[J]. 中国光学(中英文), 2024, 17(5): 1244-1253. doi: 10.37188/CO.EN-2024-0016
LIU Yi, JIANG Kai, FANG Xin-yue, YOU Ya-jun, HE Wen-jun, HOU Jia-xin, HAN Xue-feng, CHOU Xiu-jian. Widely-wavelength-tunable brillouin fiber laser with improved optical signal-to-noise ratio based on parity-time symmetric and saturable absorption effect[J]. Chinese Optics, 2024, 17(5): 1244-1253. doi: 10.37188/CO.EN-2024-0016
Citation: LIU Yi, JIANG Kai, FANG Xin-yue, YOU Ya-jun, HE Wen-jun, HOU Jia-xin, HAN Xue-feng, CHOU Xiu-jian. Widely-wavelength-tunable brillouin fiber laser with improved optical signal-to-noise ratio based on parity-time symmetric and saturable absorption effect[J]. Chinese Optics, 2024, 17(5): 1244-1253. doi: 10.37188/CO.EN-2024-0016

基于宇称时间对称与饱和吸收效应的宽可调谐高光信噪比布里渊光纤激光器

详细信息
  • 中图分类号: O437.2

Widely-wavelength-tunable brillouin fiber laser with improved optical signal-to-noise ratio based on parity-time symmetric and saturable absorption effect

doi: 10.37188/CO.EN-2024-0016
Funds: Supported by the National Natural Science Foundation of China (No. U23A20639, No. U2341210, No. 62371426); Central Guidance on Local Science and Technology Development Fund of Shanxi Province (No. YDZJSX2022B005)
More Information
    Author Bio:

    Liu Yi (1984—), male, born in Changzhi city, Shanxi province, Associate Professor. He obtained bachelor's and master's degrees from North University of China in 2007 and 2010, respectively, and Ph.D. from Tianjin University in 2014. He mainly engages in research on fiber lasers and fiber sensing. E-mail: liuyi28@163.com

    Corresponding author: liuyi28@163.comchouxiujian@nuc.edu.cn
  • 摘要:

    本文提出了一种基于宇称时间对称与饱和吸收效应的宽可调谐高光信噪比布里渊光纤激光器。这种新型布里渊光纤激光器是通过使用保偏掺铒光纤Sagnac环实现宇称时间对称和饱和吸收效应的。保偏掺铒光纤Sagnac环是由一个保偏掺铒光纤、一个耦合器和两个偏振控制器构成的。利用保偏掺铒光纤固有的双折射特性,在注入Stokes信号时形成两个处于正交偏振态的反馈环。其中一个环路在Sagnac环内提供顺时针方向的增益,而另一个环路在逆时针方向产生损耗。当饱和吸收效应参与的受激布里渊散射增益和损耗相平衡,并且增益值大于耦合系数时,由于宇称时间对称性被破坏,通过调整偏振控制器改变保偏掺铒光纤的偏振态,可获得单纵模布里渊光纤激光器。与以往的布里渊光纤激光器相比,本文提出的激光器具有更精简的结构和更宽的波长可调范围,且不受掺铒光纤放大器带宽的限制,同时仍保持窄线宽单纵模输出。此外,由于保偏掺铒光纤的饱和吸收效应,提高了宇称时间对称受激布里渊散射增益对比度,因此获得了更高的光信噪比。实验结果表明,该激光器具有1526.0881565.498 nm宽可调范围、77 dB光信噪比和140.5 Hz线宽。

     

  • Figure 1.  Experimental setup. TLS: tunable laser source; Cir: circulator; PC: polarization controllers; OC: optical coupler; SMF: single-mode fiber; ESA: electrical spectrum analyzer; PM-EDF: polarization maintaining erbium-doped fiber; PD: photodetector; OSA: optical spectrum analyzer.

    Figure 2.  The foundational concept behind the BFL based on PT symmetric and SA effect. (a) The occurrence of Stimulated Brillouin Scattering in the optical spectrum. (b) The mode selection operational principle when the PT symmetry breaking occurs within the PT-symmetric BFL

    Figure 3.  Measured optical spectrum. (a) The optical spectrum of the BFL and 1550 nm pump wavelength and (b) the threshold curve between the pump intensity and BFL output intensity

    Figure 4.  The wavelength tunability measurement results of the BFL based on SA effect and PT symmetric

    Figure 5.  The spectral analysis results of the frequency beat signals emitted from the PD. (a) Unbroken PT-symmetry and (b) broken PT-symmetry with their magnified view under 0−4 MHz frequency range; (c) and (d) are enlarged views at 100−300 kHz respectively; (e) and (f) present a comparative diagram of the measured spectra, demonstrating the effects of PT-symmetry under 300−500 kHz and 500−700 kHz frequency ranges respectively

    Figure 6.  The linewidth measurement setup of the BFL based on PT symmetric and SA effect

    Figure 7.  The linewidth measurement results of the BFL under the -20 dB intensity point

  • [1] BRILLOUIN L. Diffusion de la lumière et des rayons X par un corps transparent homogène[J]. Annales de Physique, 1922, 9(17): 88-122. doi: 10.1051/anphys/192209170088
    [2] MANDELSTAM L I. Light scattering by inhomogeneous media[J]. Zh Russ Fiz-Khim Ova, 1926, 58: 381-391.
    [3] GARMIRE E. Perspectives on stimulated Brillouin scattering[J]. New Journal of Physics, 2017, 19(1): 011003. doi: 10.1088/1367-2630/aa5447
    [4] AL-MASHHADANI M K S, AL-MASHHADANI T F, GOKTAS H H. Broadly tunable 40 GHz Brillouin frequency spacing multiwavelength Brillouin–Erbium fiber laser for DWDM[J]. Optics Communications, 2019, 451: 116-123. doi: 10.1016/j.optcom.2019.06.040
    [5] AL-MANSOORI M H, AL-SHERIYANI A, YOUNIS M A A, et al. Widely tunable multiwavelength Brillouin-erbium fiber laser with triple Brillouin-shift wavelength spacing[J]. Optical Fiber Technology, 2018, 41: 21-26. doi: 10.1016/j.yofte.2017.12.012
    [6] WANG L Y, LIU Y, YOU Y J, et al. Microwave photonic filter with a sub-kHz bandwidth based on a double ring Brillouin fiber laser[J]. Optics Letters, 2022, 47(16): 4143-4146. doi: 10.1364/OL.469193
    [7] BASTIANINI F, DI SANTE R, FALCETELLI F, et al. Optical fiber sensing cables for Brillouin-based distributed measurements[J]. Sensors, 2019, 19(23): 5172. doi: 10.3390/s19235172
    [8] XU Y P, LU P, BAO X Y. Compact single-end pumped Brillouin random fiber laser with enhanced distributed feedback[J]. Optics Letters, 2020, 45(15): 4236-4239. doi: 10.1364/OL.398593
    [9] LIU Y, SHANG Y, YI X G, et al. Triple Brillouin frequency spacing Brillouin fiber laser sensor for temperature measurement[J]. Optical Fiber Technology, 2020, 54: 102106. doi: 10.1016/j.yofte.2019.102106
    [10] SHANG Y, GUO R R, LIU Y, et al. Managing Brillouin frequency spacing for temperature measurement with Brillouin fiber laser sensor[J]. Optical and Quantum Electronics, 2020, 52(4): 211. doi: 10.1007/s11082-020-02330-8
    [11] ZHU K Y, HE J Y, CHANG K, et al. The multi-wavelength Brillouin laser based on highly nonlinear fiber[J]. Proceedings of SPIE, 2022, 12169: 1216935. doi: 10.1117/12.2623571
    [12] LOH W, YEGNANARAYANAN S, O’DONNELL F, et al. Ultra-narrow linewidth Brillouin laser with nanokelvin temperature self-referencing[J]. Optica, 2019, 6(2): 152-159. doi: 10.1364/OPTICA.6.000152
    [13] AHMAD H, RAZAK N F, ZULKIFLI M Z, et al. Ultra-narrow linewidth single longitudinal mode Brillouin fiber ring laser using highly nonlinear fiber[J]. Laser Physics Letters, 2013, 10(10): 105105. doi: 10.1088/1612-2011/10/10/105105
    [14] PARVIZI R, AROF H, ALI N M, et al. 0.16 nm spaced multi-wavelength Brillouin fiber laser in a figure-of-eight configuration[J]. Optics & Laser Technology, 2011, 43(4): 866-869.
    [15] OU ZH H, BAO X Y, LI Y, et al. Ultranarrow linewidth Brillouin fiber laser[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2058-2061. doi: 10.1109/LPT.2014.2346783
    [16] BENDER C M, BOETTCHER S. Real spectra in non-Hermitian Hamiltonians having P T symmetry[J]. Physical Review Letters, 1998, 80(24): 5243-5246. doi: 10.1103/PhysRevLett.80.5243
    [17] ÖZDEMIR Ş K, ROTTER S, NORI F, et al. Parity–time symmetry and exceptional points in photonics[J]. Nature Materials, 2019, 18(8): 783-798. doi: 10.1038/s41563-019-0304-9
    [18] EL-GANAINY R, MAKRIS K G, KHAJAVIKHAN M, et al. Non-Hermitian physics and PT symmetry[J]. Nature Physics, 2018, 14(1): 11-19. doi: 10.1038/nphys4323
    [19] LI P, DAI ZH, FAN ZH Q, et al. Parity–time-symmetric frequency-tunable optoelectronic oscillator with a single dual-polarization optical loop[J]. Optics Letters, 2020, 45(11): 3139-3142. doi: 10.1364/OL.394719
    [20] ZHANG J J, LI L ZH, WANG G Y, et al. Parity-time symmetry in wavelength space within a single spatial resonator[J]. Nature Communications, 2020, 11(1): 3217. doi: 10.1038/s41467-020-16705-8
    [21] ZHANG J J, YAO J P. Parity-time–symmetric optoelectronic oscillator[J]. Science Advances, 2018, 4(6): eaar6782. doi: 10.1126/sciadv.aar6782
    [22] LI L ZH, CAO Y, ZHI Y Y, et al. Polarimetric parity-time symmetry in a photonic system[J]. Light: Science & Applications, 2020, 9: 169.
    [23] ZHU Y Y, ZHAO Y S, FAN J H, et al. Modal gain analysis of parity-time-symmetric distributed feedback lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(5): 1500207.
    [24] DAI ZH, FAN ZH Q, LI P, et al. Widely wavelength-tunable parity-time symmetric single-longitudinal-mode fiber ring laser with a single physical loop[J]. Journal of Lightwave Technology, 2021, 39(7): 2151-2157. doi: 10.1109/JLT.2020.3044067
    [25] LIU Y, WANG L Y, XU X, et al. Narrow linewidth parity-time symmetric Brillouin fiber laser based on a dual-polarization cavity with a single micro-ring resonator[J]. Optics Express, 2022, 30(25): 44545-44555. doi: 10.1364/OE.475957
    [26] LIU Y, WANG L Y, YOU Y J, et al. Single longitudinal mode parity-time symmetric Brillouin fiber laser based on lithium niobate phase modulator sagnac loop[J]. Journal of Lightwave Technology, 2023, 41(5): 1552-1558. doi: 10.1109/JLT.2022.3224208
    [27] LIU Y, GUO R R, ZHAO J J, et al. An EDFA-gain equalizer based on a Sagnac loop with an unpumped erbium-doped fiber[J]. Journal of Lightwave Technology, 2021, 39(13): 4496-4502. doi: 10.1109/JLT.2021.3071422
    [28] MAKRIS K G, EL-GANAINY R, CHRISTODOULIDES D N, et al. Beam dynamics in P T symmetric optical lattices[J]. Physical Review Letters, 2008, 100(10): 103904. doi: 10.1103/PhysRevLett.100.103904
    [29] DEBUT A, RANDOUX S, ZEMMOURI J. Linewidth narrowing in Brillouin lasers: theoretical analysis[J]. Physical Review A, 2000, 62(2): 023803. doi: 10.1103/PhysRevA.62.023803
    [30] POLLNAU M, EICHHORN M. Spectral coherence, Part I: passive-resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation[J]. Progress in Quantum Electronics, 2020, 72: 100255. doi: 10.1016/j.pquantelec.2020.100255
    [31] WANG G M, ZHAN L, LIU J M, et al. Watt-level ultrahigh-optical signal-to-noise ratio single-longitudinal-mode tunable Brillouin fiber laser[J]. Optics Letters, 2013, 38(1): 19-21. doi: 10.1364/OL.38.000019
  • 加载中
图(7)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  66
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 修回日期:  2024-07-03
  • 录用日期:  2024-07-23
  • 网络出版日期:  2024-07-31

目录

    /

    返回文章
    返回