留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of bonding layer for integrated structure of space gravitational wave detector telescope

ZHAO Hong-chao LIU Chang ZHOU Wen-ke ZHU Han-bin CHEN Wen-duo

赵宏超, 刘畅, 周文科, 朱汉斌, 陈文多. 空间引力波探测望远镜集成结构的胶接方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0025
引用本文: 赵宏超, 刘畅, 周文科, 朱汉斌, 陈文多. 空间引力波探测望远镜集成结构的胶接方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0025
ZHAO Hong-chao, LIU Chang, ZHOU Wen-ke, ZHU Han-bin, CHEN Wen-duo. Study of bonding layer for integrated structure of space gravitational wave detector telescope[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0025
Citation: ZHAO Hong-chao, LIU Chang, ZHOU Wen-ke, ZHU Han-bin, CHEN Wen-duo. Study of bonding layer for integrated structure of space gravitational wave detector telescope[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0025

空间引力波探测望远镜集成结构的胶接方法研究

详细信息
  • 中图分类号: O348

Study of bonding layer for integrated structure of space gravitational wave detector telescope

doi: 10.37188/CO.EN-2024-0025
Funds: Supported by Shenzhen Science and Technology Program (No. 20220818153519003); National Key R & D Program of China (No. 2021YFC2202103); National Natural Science Foundation of China (No. 22341303)
More Information
    Author Bio:

    ZHAO Hongchao (1985—), PH.D, Associate Professor, School of Advanced Manufacturing, Shenzhen Campus of Sun Yat-sen University. His research interests are in precision optical systems and ultra -precision and ultra-stable structures. E-mail: zhaohongch@mail.sysu.edu.cn

    CHEN Wenduo (1986—), PH.D, Associate Professor, School of Materials, Shenzhen Campus of Sun Yat-sen University. Her research interests are in the computational simulation and big data work of polymer and composite materials. E-mail: chenwd29@mail.sysu.edu.cn

    Corresponding author: chenwd29@mail.sysu.edu.cn
  • 摘要:

    为了实现超低频段空间引力波的探测,望远镜和光学平台的集成结构需要具有极高的稳定性和可靠性。然而,望远镜悬臂梁式的设计对集成结构的研制提出了重大挑战,特别是依赖于玻璃-金属异质键合的粘接结构。为了应对这些挑战实现望远镜系统的高可靠性研制,本研究对集成结构粘合层进行了设计、分析和实验研究。研究表明,J-133粘合剂在粘接层厚度为0.30 mm、金属基板的表面粗糙度为Ra 0.8时具有最佳性能。这些发现显著提高了光学系统的可靠性,同时最大限度地降低了潜在风险。

     

  • Figure 1.  Movable optical subassemblies (MOSAs) and integrated structure. (a) Key components of movable optical subassemblies and (b) integrated structure and design parameters.

    Figure 2.  The second and third modal shapes. (a) The second modal shape and (b) third modal shape.

    Figure 3.  Stress cloud map of bonding layer in random vibration analysis. (a) Flexures bonded on with epoxy. (b) Maximum normal stress cloud map when excitations are applied in the x-direction. (c) Maximum normal stress cloud map when excitations are applied in the y-direction. (d) Random vibration inputs. (e) Maximum normal stress cloud map when excitations are applied in the z-direction. (f) Maximum shear stress cloud map of the bonding layer.

    Figure 4.  Bonding process and tensile strength test. (a) Bonding process and (b) tensile strength test.

    Figure 5.  Tensile strength test results. (a) Tensile strength test results of J-133 adhesive. (b) Tensile strength test results of GHJ-01(z) adhesive. (c) Tensile strength test results of 3M-DP2216 adhesive. (d) Average strength values of three adhesives at different roughness levels

    Figure 6.  Failure process and experimental results of J-133 bonding layer.

    Table  1.   Optimal solution of integrated structural parameters.

    Variables Range of
    values
    Optimization
    results
    The upper ring support radii r1/mm 150–180 180.0
    The lower ring support radii r2/mm 180–240 206.5
    The angle between the upper
    support points α
    5–20 15.7
    The angle between the lower
    support points β
    15–40 35.0
    下载: 导出CSV

    Table  2.   Alternative epoxy adhesive and experimental design.

    Variables
    Epoxy adhesiveJ-133 GHJ-01(Z) 3M-DP2216
    Bonding-layer thickness /mm0.15 0.3 0.5
    Surface roughness /μmRa0.8 Ra1.6 Ra3.2 Ra6.3
    Single group specimens36
    Total specimens108
    下载: 导出CSV
  • [1] KAWAMURA S, NAKAMURA T, ANDO M, et al. Space gravitational-wave antennas DECIGO and B-DECIGO[J]. International Journal of Modern Physics D, 2019, 28(12): 1845001. doi: 10.1142/S0218271818450013
    [2] TORRES-ORJUELA A, HUANG SH J, LIANG ZH CH, et al. Detection of astrophysical gravitational wave sources by TianQin and LISA[J]. Science China Physics, Mechanics & Astronomy, 2024, 67(5): 259511.
    [3] WANG H T, JIANG ZH, SESANA A, et al. Science with the TianQin observatory: preliminary results on massive black hole binaries[J]. Physical Review D, 2019, 100(4): 043003. doi: 10.1103/PhysRevD.100.043003
    [4] FAN Z C, ZHAO L J, CAO SH Y, et al. High performance telescope system design for the TianQin project[J]. Classical and Quantum Gravity, 2022, 39(19): 195017. doi: 10.1088/1361-6382/ac8b57
    [5] LIVAS J C, SANKAR S R. Optical telescope system-level design considerations for a space-based gravitational wave mission[J]. Proceedings of SPIE, 2016, 9904: 99041K.
    [6] YU M, LI J C, LIN H G, et al. Optical system design of large-aperture space gravitational wave telescope[J]. Optical Engineering, 2023, 62(6): 065107.
    [7] ZHANG S, ZHAO D L. Aerospace Materials Handbook[M]. Boca Raton: CRC Press, 2012: 781.
    [8] SANJUÁN J, PRESTON A, KORYTOV D, et al. Carbon fiber reinforced polymer dimensional stability investigations for use on the laser interferometer space antenna mission telescope[J]. Review of Scientific Instruments, 2011, 82: 124501. doi: 10.1063/1.3662470
    [9] CHWALLA M, DANZMANN K, ÁLVAREZ M D, et al. Optical suppression of tilt-to-length coupling in the LISA long-arm interferometer[J]. Physical Review Applied, 2020, 14(1): 014030. doi: 10.1103/PhysRevApplied.14.014030
    [10] LIGHTSEY P A, ATKINSON C, CLAMPIN M, et al. James Webb Space Telescope: large deployable cryogenic telescope in space[J]. Optical Engineering, 2012, 51(1): 011003. doi: 10.1117/1.OE.51.1.011003
    [11] HU H F, ZHOU D, ZHAO CH CH, et al. Hetero-bonding strength investigation into opto-mechanical interface[J]. Frontiers in Astronomy and Space Sciences, 2024, 11: 1406090. doi: 10.3389/fspas.2024.1406090
    [12] ELLIFFE E J, BOGENSTAHL J, DESHPANDE A, et al. Hydroxide-catalysis bonding for stable optical systems for space[J]. Classical and Quantum Gravity, 2005, 22(10): S257-S267. doi: 10.1088/0264-9381/22/10/018
    [13] MASSO REID M, HAUGHIAN K, CUMMING A V, et al. Temperature dependence of the thermal conductivity of hydroxide catalysis bonds between silicon substrates[J]. Classical and Quantum Gravity, 2023, 40(24): 245006. doi: 10.1088/1361-6382/ad0923
    [14] FAULKS H, GEHBAUER K, BISI M. LISA final technical report[C]. Proceedings of the National Aeronautics and Space Administration, 2000. (查阅网上资料, 未找到本条文献信息, 请确认) .
    [15] AGARWAL P, KUMAR M, CHOUDHARY M, et al. Experimental and numerical analysis of mechanical, thermal and thermomechanical properties of hybrid glass/metal fiber reinforced epoxy composites[J]. Fibers and Polymers, 2022, 23(5): 1342-1365. doi: 10.1007/s12221-022-4760-5
    [16] LI SH H, HU K J, HUI W CH, et al. Shear strength and interfacial characterization of borosilicate glass-to-metal seals[J]. Journal of Alloys and Compounds, 2020, 827: 154275. doi: 10.1016/j.jallcom.2020.154275
    [17] WANG H R. Research on a bimorph piezoelectric deformable mirror for adaptive optics in optical telescope[J]. Optics Express, 2017, 25(7): 8115-8122. doi: 10.1364/OE.25.008115
    [18] LI SH H, CAI Y Y, ZHU Q Y, et al. Interface degradation of glass-to-metal seals during thermo-oxidative aging[J]. Corrosion Science, 2022, 199: 110189. doi: 10.1016/j.corsci.2022.110189
    [19] LANCKER B V, CORTE W D, BELIS J. Investigation of the structural performance of continuous adhesive glass-metal connections using structural silicone and hybrid polymer adhesives[J]. Engineering Structures, 2024, 304: 117612. doi: 10.1016/j.engstruct.2024.117612
    [20] WANG W, XIAO Y Y, WU X Y, et al. Optimization of laser-assisted glass frit bonding process by response surface methodology[J]. Optics & Laser Technology, 2016, 77: 111-115.
    [21] RICHET P. Encyclopedia of Glass Science, Technology, History, and Culture[M]. Hoboken, New Jersey: Wiley: American Ceramic Society, 2021: 629-638.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  70
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-31
  • 修回日期:  2024-09-04
  • 录用日期:  2024-10-09
  • 网络出版日期:  2024-10-22

目录

    /

    返回文章
    返回