Detection method of splicing detector based on channel spectral dispersion
doi: 10.37188/CO.EN-2024-0026
-
摘要:
受探测器材料和技术的限制,大尺寸的探测器需要进行拼接和集成才能有效成像。对于拼接式大靶面探测器,拼接平整度直接决定了能量利用率和图像清晰度。同时,由于拼接探测器的调整范围有限,还需要对基准构建进行约束。针对上述问题,本文提出了一种基于通道光谱色散的新型探测器平整度检测方法。通过测量共面调整的干涉条纹,将调整后的残差控制在300 nm以内,验证了整个技术的可行性,并为下一代大口径天文巡天设备和大型目标探测器的发展提供了重要的技术支持。
Abstract:For segmented detectors, surface flatness is critical as it directly influences both energy resolution and image clarity. Additionally, the limited adjustment range of the segmented detectors necessitates precise benchmark construction. This paper proposes an architecture for detecting detector flatness based on optical fiber interconnection. By measuring the dispersion fringes for coplanar adjustment, the final adjustment residual is improved to better than 300 nm. This result validates the feasibility of the proposed technology and provides significant technical support for the development of next-generation large-aperture sky survey equipment.
-
Figure 3. Multi-stage surface figure reconstruction analysis based on simulation. (a) Sampling figure in low-resolution reconstruction process. (b) Original surface figure in low-resolution reconstruction process. (c) Reconstructed surface figure by low-resolution reconstruction. (d) Sampling figure in low-resolution reconstruction process. (e) Original surface figure in low-resolution reconstruction process. (f) Reconstructed surface figure by low-resolution reconstruction. (g) Sampling figure in high-resolution reconstruction process. (h) Original surface figure in high-resolution reconstruction process. (i) Reconstructed surface figure by high-resolution reconstruction.
Table 1. Examples of spliced detectors in terms of foundations
Detectors Number of detectors Resolution "/pixel Aperture /m Gap/μm Accuracy /μm Organization VST 32 CCDs 0.21 2.6 500 30 ESO "Mozi" survey telescope 9 (10 K × 10 K) CCDs 0.12 2.5 / 25 University of Science and Technology of China LSST 189 (4K×4K) CCDs 0.20 8.4 200 10 SLAC National Accelerator Laboratory Blanco telescope 62 CCDs 0.263 8.4 200 15 Cerro Tololo Inter-American Observatory (CTIO) Pan-STARRS 60 CCDs 0.258 1.8 / 10 University of Hawaii (UH) Gaia survey telescope 106 CCDs 0.18 1.5×2 500 20 The European Space Agency (ESA) -
[1] SPERGEL D, GEHRELS N, BRECKINRIDGE J, et al. Wide-field InfraRed survey telescope-astrophysics focused telescope assets WFIRST-AFTA final report[J]. arXiv: 1305.5422, 2013. (查阅网上资料, 未能确认文献类型, 请确认) . [2] BOLCAR M R, ALOEZOS S, BLY V T, et al. The large UV/optical/infrared surveyor (LUVOIR): decadal mission concept design update[J]. Proceedings of SPIE, 2017, 10398: 1039809. [3] FORTNEY J, KATARIA T, STEVENSON K, et al. The origins space telescope: towards an understanding of temperate planetary atmospheres[J]. arXiv: 1803.07730, 2018. (查阅网上资料, 未能确认文献类型, 请确认) . [4] KIM D W, ESPARZA M, QUACH H, et al. Optical technology for future telescopes[J]. Proceedings of SPIE, 2021, 11761: 1176103. [5] POSTMAN M, SPARKS W B, LIU F CH, et al. Using the ISS as a testbed to prepare for the next generation of space-based telescopes[J]. Proceedings of SPIE, 2012, 8442: 84421T. [6] SABELHAUS P A, DECKER J E. An overview of the James Webb space telescope (JWST) project[J]. Proceedings of the SPIE, 2004, 5487: 550-563. doi: 10.1117/12.549895 [7] BENIELLI D, POLEHAMPTON E, HOPWOOD R, et al. Herschel SPIRE FTS spectral mapping calibration[J]. Experimental Astronomy, 2014, 37(2): 357-367. [8] ZHONG C, SHANG Z M, WEN G J, et al. A step-by-step exact measuring angle calibration applicable for multi-detector stitched aerial camera[C]//Proceedings of the 5th International Symposium of Space Optical Instruments and Applications, Springer, 2018: 235-243. [9] BASU S. Conceptual design of an autonomously assembled space telescope (AAST)[J]. Proceedings of SPIE, 2004, 5166: 98-112. [10] BOLCAR M R. The large UV/optical/infrared surveyor (LUVOIR): decadal mission concept technology development overview[J]. Proceedings of SPIE, 2017, 10398: 103980A. [11] AN Q CH, WU X X, LIN X D, et al. Alignment of DECam-like large survey telescope for real-time active optics and error analysis[J]. Optics Communications, 2021, 484: 126685. [12] European Southern Observatory. Instrument description[EB/OL]. [2019-04-30]. https://www.eso.org/sci/facilities/paranal/instruments/omegacam/inst.html. [13] PS1 GPC1 camera[EB/OL]. [2022-05-04]. https://outerspace.stsci.edu/display/PANSTARRS/PS1+GPC1+camera. (查阅网上资料,请补充作者信息) . [14] AMOS. PROBA-V-TMA design and manufacturing[EB/OL]. [2018-10-28]. https://www.amos.be/project/proba-v-structure-and-mirror-manufacturing. [15] STRÖBELE S. A new machine for planarity measurement of CCDs and mosaics of CCDs[J]. Experimental Astronomy, 2001, 11(2): 151-156. [16] GUO N X, ZHANG J X, LIU CH H, et al. Overview of CCDs flatness test method for large aperture and wide-field telescope[J]. Laser & Infrared, 2020, 50(4): 387-395. (in Chinese). doi: 10.3969/j.issn.1001-5078.2020.04.001 [17] AN Q CH, WANG K, LIU X Y, et al. Integrated test system for large-aperture telescopes based on astrophotonics interconnections[J]. Instrumentation, 2024, 11(1): 1-9. [18] AN Q CH, ZHANG H F, WU X X, et al. In-situ metrology of large segmented detector based on modified optical truss[J]. IEEE Photonics Journal, 2023, 15(2): 6801206.