留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Detection method of splicing detector based on channel spectral dispersion

ZHAO Hong-chao ZHANG Xiao-qian AN Qi-chang

赵宏超, 张晓芊, 安其昌. 基于通道光谱色散的拼接探测器平面检测方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0026
引用本文: 赵宏超, 张晓芊, 安其昌. 基于通道光谱色散的拼接探测器平面检测方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0026
ZHAO Hong-chao, ZHANG Xiao-qian, AN Qi-chang. Detection method of splicing detector based on channel spectral dispersion[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0026
Citation: ZHAO Hong-chao, ZHANG Xiao-qian, AN Qi-chang. Detection method of splicing detector based on channel spectral dispersion[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0026

基于通道光谱色散的拼接探测器平面检测方法研究

详细信息
  • 中图分类号: TH751

Detection method of splicing detector based on channel spectral dispersion

doi: 10.37188/CO.EN-2024-0026
Funds: Supported by National Key R & D Program of China (No. 2021YFC2202103); Jilin Science and Technology Development Program (No. 20220402032GH); Shenzhen Science and Technology Program (No. 20220818153519003).
More Information
    Author Bio:

    ZHAO Hongchao (1985—), PH.D, Associate Professor, School of Advanced Manufacturing, Shenzhen Campus of Sun Yat-sen University. His research interests are in precision optical systems and ultra -precision and ultra-stable structures. E-mail: zhaohongch@mail.sysu.edu.cn

    ZHANG Xiaoqian (2004—), undergraduate, School of Advanced Manufacturing, Shenzhen Campus of Sun Yat-sen University. E-mail: zhangxq87@mail2.sysu.edu.cn

    AN Qichang (1988—), PH.D, Associate Researcher. He received the B.E. degree from University of Science and Technology of China in 2011 and the Ph.D. degree from University of Chinese Academy of Sciences in 2018. His research interests include inspection and mounting of large-calibre optical systems. E-mail: anjj@mail.ustc.edu.cn

    Corresponding author: zhangxq87@mail2.sysu.edu.cnanjj@mail.ustc.edu.cn
  • 摘要:

    受探测器材料和技术的限制,大尺寸的探测器需要进行拼接和集成才能有效成像。对于拼接式大靶面探测器,拼接平整度直接决定了能量利用率和图像清晰度。同时,由于拼接探测器的调整范围有限,还需要对基准构建进行约束。针对上述问题,本文提出了一种基于通道光谱色散的新型探测器平整度检测方法。通过测量共面调整的干涉条纹,将调整后的残差控制在300 nm以内,验证了整个技术的可行性,并为下一代大口径天文巡天设备和大型目标探测器的发展提供了重要的技术支持。

     

  • Figure 1.  Large-range high-precision step difference calculation based on channel spectrum.

    Figure 2.  Surface shape reconstruction of segmented detectors based on slope gradients. (a) Reconstruct surface figure. (b) Accuracy comparison of cross-section reconstruction. (c) Structure function comparison.

    Figure 3.  Multi-stage surface figure reconstruction analysis based on simulation. (a) Sampling figure in low-resolution reconstruction process. (b) Original surface figure in low-resolution reconstruction process. (c) Reconstructed surface figure by low-resolution reconstruction. (d) Sampling figure in low-resolution reconstruction process. (e) Original surface figure in low-resolution reconstruction process. (f) Reconstructed surface figure by low-resolution reconstruction. (g) Sampling figure in high-resolution reconstruction process. (h) Original surface figure in high-resolution reconstruction process. (i) Reconstructed surface figure by high-resolution reconstruction.

    Figure 4.  Detector architecture based on channel spectroscopy.

    Figure 5.  Photo of high-throughput segmented detectors measurement site.

    Figure 6.  Under interconnect architecture of optical fibre, original dispersive fringes and differential in two directions. (a) original, (b) differential direction 1, and (c) differential direction 2.

    Figure 7.  Under interconnect architecture of optical fibre, original dispersive stripes and frequency domain signals in two directions. (a). original, (b) differential direction 1, and (c) differential direction 2.

    Figure 8.  Frequency transformation under high-throughput testing with different step differences.

    Table  1.   Examples of spliced detectors in terms of foundations

    Detectors Number of detectors Resolution "/pixel Aperture /m Gap/μm Accuracy /μm Organization
    VST 32 CCDs 0.21 2.6 500 30 ESO
    "Mozi" survey telescope 9 (10 K × 10 K) CCDs 0.12 2.5 / 25 University of Science and Technology of China
    LSST 189 (4K×4K) CCDs 0.20 8.4 200 10 SLAC National Accelerator Laboratory
    Blanco telescope 62 CCDs 0.263 8.4 200 15 Cerro Tololo Inter-American Observatory (CTIO)
    Pan-STARRS 60 CCDs 0.258 1.8 / 10 University of Hawaii (UH)
    Gaia survey telescope 106 CCDs 0.18 1.5×2 500 20 The European Space Agency (ESA)
    下载: 导出CSV
  • [1] SPERGEL D, GEHRELS N, BRECKINRIDGE J, et al. Wide-field InfraRed survey telescope-astrophysics focused telescope assets WFIRST-AFTA final report[J]. arXiv: 1305.5422, 2013. (查阅网上资料, 未能确认文献类型, 请确认) .
    [2] BOLCAR M R, ALOEZOS S, BLY V T, et al. The large UV/optical/infrared surveyor (LUVOIR): decadal mission concept design update[J]. Proceedings of SPIE, 2017, 10398: 1039809.
    [3] FORTNEY J, KATARIA T, STEVENSON K, et al. The origins space telescope: towards an understanding of temperate planetary atmospheres[J]. arXiv: 1803.07730, 2018. (查阅网上资料, 未能确认文献类型, 请确认) .
    [4] KIM D W, ESPARZA M, QUACH H, et al. Optical technology for future telescopes[J]. Proceedings of SPIE, 2021, 11761: 1176103.
    [5] POSTMAN M, SPARKS W B, LIU F CH, et al. Using the ISS as a testbed to prepare for the next generation of space-based telescopes[J]. Proceedings of SPIE, 2012, 8442: 84421T.
    [6] SABELHAUS P A, DECKER J E. An overview of the James Webb space telescope (JWST) project[J]. Proceedings of the SPIE, 2004, 5487: 550-563. doi: 10.1117/12.549895
    [7] BENIELLI D, POLEHAMPTON E, HOPWOOD R, et al. Herschel SPIRE FTS spectral mapping calibration[J]. Experimental Astronomy, 2014, 37(2): 357-367.
    [8] ZHONG C, SHANG Z M, WEN G J, et al. A step-by-step exact measuring angle calibration applicable for multi-detector stitched aerial camera[C]//Proceedings of the 5th International Symposium of Space Optical Instruments and Applications, Springer, 2018: 235-243.
    [9] BASU S. Conceptual design of an autonomously assembled space telescope (AAST)[J]. Proceedings of SPIE, 2004, 5166: 98-112.
    [10] BOLCAR M R. The large UV/optical/infrared surveyor (LUVOIR): decadal mission concept technology development overview[J]. Proceedings of SPIE, 2017, 10398: 103980A.
    [11] AN Q CH, WU X X, LIN X D, et al. Alignment of DECam-like large survey telescope for real-time active optics and error analysis[J]. Optics Communications, 2021, 484: 126685.
    [12] European Southern Observatory. Instrument description[EB/OL]. [2019-04-30]. https://www.eso.org/sci/facilities/paranal/instruments/omegacam/inst.html.
    [13] PS1 GPC1 camera[EB/OL]. [2022-05-04]. https://outerspace.stsci.edu/display/PANSTARRS/PS1+GPC1+camera. (查阅网上资料,请补充作者信息) .
    [14] AMOS. PROBA-V-TMA design and manufacturing[EB/OL]. [2018-10-28]. https://www.amos.be/project/proba-v-structure-and-mirror-manufacturing.
    [15] STRÖBELE S. A new machine for planarity measurement of CCDs and mosaics of CCDs[J]. Experimental Astronomy, 2001, 11(2): 151-156.
    [16] GUO N X, ZHANG J X, LIU CH H, et al. Overview of CCDs flatness test method for large aperture and wide-field telescope[J]. Laser & Infrared, 2020, 50(4): 387-395. (in Chinese). doi: 10.3969/j.issn.1001-5078.2020.04.001
    [17] AN Q CH, WANG K, LIU X Y, et al. Integrated test system for large-aperture telescopes based on astrophotonics interconnections[J]. Instrumentation, 2024, 11(1): 1-9.
    [18] AN Q CH, ZHANG H F, WU X X, et al. In-situ metrology of large segmented detector based on modified optical truss[J]. IEEE Photonics Journal, 2023, 15(2): 6801206.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  24
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-14
  • 修回日期:  2024-09-23
  • 录用日期:  2024-10-08
  • 网络出版日期:  2024-10-22

目录

    /

    返回文章
    返回