Numerical simulations on the photoelectric performance of AlGaN-based ultraviolet VCSELs with a slope-shaped p-type layer
doi: 10.37188/CO.EN-2024-0027
-
摘要:
由于GaN基紫外VCSEL中的空穴注入层p型掺杂效率较低,导致多量子阱中不能实现有效空穴注入,这极大的降低了紫外VCSEL的光电性能。因此本文设计了一种基于AlGaN的UV VCSEL中使用渐变HIL和EBL结构。该结构能够提高空穴注入效率,使空穴注入层中的空穴浓度增加,也能够使电子阻挡层和空穴注入层界面处的空穴势垒高度降低,从而利于空穴注入。我们使用商用软件PICS3D构建了该结构,并对能带结构以及载流子浓度等进行了模拟和理论分析。通过空穴注入层Al组分渐变引入极化掺杂增加空穴浓度从而提高空穴注入效率。在此基础上电子阻挡层渐变消除了空穴注入层和电子阻挡层界面的空穴突变势垒,使价带更平滑。这提高了多量子阱中的受激辐射复合速率,增强了激光功率。因此,渐变的p型层设计可以提升紫外VCSEL的光电性能。
Abstract:Owing to the low p-type doping efficiency of GaN-based ultraviolet (UV) vertical-cavity surface-emitting laser (VCSEL) hole injection layers (HILs), effective hole injection in multi-quantum wells (MQW) is not achieved, significantly limiting the photoelectric performance of UV VCSELs. By improving hole injection efficiency, the hole concentration in the HIL is increased, and the hole barrier at the electron barrier layer (EBL)/HIL interface is decreased. This minimises the hindering effect of hole injection. In this study, we developed a slope-shaped HIL and an EBL structure in AlGaN-based UV VCSELs. A mathematical model of this structure was established using a commercial software, photonic integrated circuit simulator in three-dimension (PICS3D). We conducted simulations and theoretical analyses of the band structure and carrier concentration. Introducing polarisation doping through the Al composition gradient in the HIL enhanced the hole concentration, thereby improving the hole injection efficiency. Furthermore, modifying the EBL eliminated the abrupt potential barrier for holes at the HIL/EBL interface, smoothing the valence band. This improved the stimulated radiative recombination rate in the MQW, increasing the laser power. Therefore, the sloped p-type layer can enhance the optoelectronic performance of UV VCSELs.
-
Key words:
- UV VCSEL /
- AlGaN /
- polarisation doping /
- EBL /
- hole injection efficiency
-
-
[1] TAKEUCHI T, KAMIYAMA S, IWAYA M, et al. GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors[J]. Reports on Progress in Physics, 2019, 82(1): 012502. doi: 10.1088/1361-6633/aad3e9 [2] CHEN Y H, MEI Y, ZHENG ZH M, et al. Effects of different current confinement layers in GaN-based VCSELs[J]. AIP Advances, 2023, 13(7): 075114. doi: 10.1063/5.0155159 [3] XU R B, MEI Y, XU H, et al. Effects of lateral optical confinement in GaN VCSELs with double dielectric DBRs[J]. IEEE Photonics Journal, 2020, 12(2): 1501708. doi: 10.1109/JPHOT.2020.2979564 [4] ELAFANDY R T, KANG J H, MI CH Z Y, et al. Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers[J]. ACS Photonics, 2021, 8(4): 1041-1047. doi: 10.1021/acsphotonics.1c00211 [5] ELAFANDY R T, KANG J H, LI B J, et al. Room-temperature operation of c-plane GaN vertical cavity surface emitting laser on conductive nanoporous distributed Bragg reflector[J]. Applied Physics Lettrers, 2020, 117(1): 011101. doi: 10.1063/5.0012281 [6] HAYASHI K, HAMAGUCHI T, KEARNS J A, et al. Narrow emission of blue GaN-based vertical-cavity surface-emitting lasers with a curved mirror[J]. IEEE Photonics Jouranl, 2022, 14(4): 1536905. doi: 10.1109/JPHOT.2022.3165665 [7] LEONARD J T, YOUNG E C, YONKEE B P, et al. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts[J]. Proceedings of SPIE, 2016, 9748: 97481B. doi: 10.1117/12.2206211 [8] YANG J, ZHAO D G, LIU Z SH, et al. Room temperature continuous-wave operated 2.0-W GaN-based ultraviolet laser diodes[J]. Optics Letters, 2022, 47(7): 1666-1668. doi: 10.1364/OL.454340 [9] YANG J, ZHAO D G, LIU Z SH, et al. A 357.9 nm GaN/AlGaN multiple quantum well ultraviolet laser diode[J]. Jouranl of Semiconductors, 2022, 43(1): 010501. doi: 10.1088/1674-4926/43/1/010501 [10] ZHENG ZH M, WANG Y K, HOO J, et al. High-quality AlGaN epitaxial structures and realization of UVC vertical-cavity surface-emitting lasers[J]. Science China Materials, 2023, 66(5): 1978-1988. doi: 10.1007/s40843-022-2310-5 [11] WANG Y K, ZHENG ZH M, LONG H, et al. Development and challenges of nitride vertical-cavity surface-emitting lasers (invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251203. doi: 10.3788/gzxb20225102.0251203 [12] QIU X J, ZHANG Y H, HANG SH, et al. Enhancing the lateral current injection by modulating the doping type in the p-type hole injection layer for InGaN/GaN vertical cavity surface emitting lasers[J]. Optics Express, 2020, 28(12): 18035-18048. doi: 10.1364/OE.396482 [13] HAN L, GAO Y B, HANG SH, et al. Impact of p-AlGaN/GaN hole injection layer on GaN-based vertical cavity surface emitting laser diodes [invited][J]. Chinese Optics Letters, 2022, 20(3): 031402. doi: 10.3788/COL202220.031402 [14] PENG F, YANG CH, DENG S Y, et al. Simulation of a high-performance enhancement-mode HFET with back-to-back graded AlGaN layers[J]. Science China Information Sciences, 2019, 62(6): 62403. doi: 10.1007/s11432-018-9503-9 [15] VERMA J, ISLAM S M, PROTASENKO V, et al. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures[J]. Applied Physics Letters, 2014, 104(2): 021105. doi: 10.1063/1.4862064 [16] ZHANG L, DING K, YAN J C, et al. Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure[J]. Applied Physics Letters, 2010, 97(6): 062103. doi: 10.1063/1.3478556 [17] ZHANG H CH, HUANG CH, SONG K, et al. Compositionally graded III-nitride alloys: building blocks for efficient ultraviolet optoelectronics and power electronics[J]. Reports on Progress in Physics, 2021, 84(4): 044401. doi: 10.1088/1361-6633/abde93 [18] XING ZH Y, ZHANG H CH, SUN Y, et al. Normally-OFF AlGaN/GaN-based HEMTs with decreasingly graded AlGaN cap layer[J]. Journal of Physics D: Applied Physics, 2023, 56(2): 025105. doi: 10.1088/1361-6463/ac99e9 [19] ZHANG H CH, LIANG F ZH, YANG L, et al. Superior AlGaN/GaN-based phototransistors and arrays with reconfigurable triple-mode functionalities enabled by voltage-programmed two-dimensional electron gas for high-quality imaging[J]. Advanced Materials, 2024, 36(36): 2405874. doi: 10.1002/adma.202405874 [20] KOLBE T, KNAUER A, RASS J, et al. 234 nm far-ultraviolet-C light-emitting diodes with polarization-doped hole injection layer[J]. Applied Physics Letters, 2023, 122(19): 191101. doi: 10.1063/5.0143661 [21] SATTER M, LOCHNER Z, KAO T T, et al. AlGaN-based vertical injection laser diodes using inverse tapered p-waveguide for efficient hole transport[J]. IEEE Journal of Quantum Electronics, 2014, 50(3): 166-173. doi: 10.1109/jqe.2014.2300757 [22] LIU Y S, KAO T T, SATTER M, et al. Inverse-tapered p-waveguide for vertical hole transport in high-[Al] AlGaN emitters[J]. IEEE Photonics Technology Letters, 2015, 27(16): 1768-1771. doi: 10.1109/lpt.2015.2443053 [23] LU L, DING G G, ZHANG Y, et al. Improved performance of AlGaN-based deep ultraviolet light-emitting diode using modulated-taper design for p-AlGaN layer[J]. Semiconductor Science and Technology, 2018, 33(3): 035008. doi: 10.1088/1361-6641/aaa8b2 [24] LUO H W, LI J Z, LI M. Improved output power of GaN-based VCSEL with band-engineered electron blocking layer[J]. Micromachines, 2019, 10(10): 694. doi: 10.3390/mi10100694 [25] CHENG CH, LEI Y, LIU ZH Q, et al. Performance improvement of light-emitting diodes with double superlattices confinement layer[J]. Journal of Semiconductors, 2018, 39(11): 114005. doi: 10.1088/1674-4926/39/11/114005 [26] MONDAL R K, CHATTERJEE V, PAL S. Effect of step-graded superlattice electron blocking layer on performance of AlGaN based deep-UV light emitting diodes[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108: 233-237. doi: 10.1016/j.physe.2018.11.022 [27] YANG W, LI D, LIU N Y, et al. Improvement of hole injection and electron overflow by a tapered AlGaN electron blocking layer in InGaN-based blue laser diodes[J]. Applied Physics Letters, 2012, 100(3): 031105. doi: 10.1063/1.3678197 [28] WANG Y F, NIASS M I, WANG F, et al. Improvement of radiative recombination rate in deep ultraviolet laser diodes with step-like quantum barrier and aluminum-content graded electron blocking layer[J]. Chinese Physics B, 2020, 29(1): 017301. doi: 10.1088/1674-1056/ab592c [29] AZOFF E M. Closed-form method for solving the steady-state generalised energy-momentum conservation equations[J]. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 1987, 6(1): 25-30. doi: 10.1108/eb010297 [30] TURIN V O. A modified transferred-electron high-field mobility model for GaN devices simulation[J]. Solid-State Electronics, 2005, 49(10): 1678-1682. doi: 10.1016/j.sse.2005.09.002 [31] PELA R R, HSIAO C L, HULTMAN L, et al. Electronic and optical properties of core-shell InAlN nanorods: a comparative study via LDA, LDA-1/2, mBJ, HSE06, G0W0 and BSE methods[J]. Physical Chemistry Chemical Physics, 2024, 26(9): 7504-7514. doi: 10.1039/D3CP05295H [32] CHUANG CH M, CHENG Y H, WU Y R. Electro-optical numerical modeling for the design of UVA nitride-based vertical-cavity surface-emitting laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(1): 1700606. doi: 10.1109/JSTQE.2021.3114411 [33] LAI C Y, HSU T M, CHANG W H, et al. Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy[J]. Journal of Applied Physics, 2002, 91(1): 531-533. doi: 10.1063/1.1426237 [34] GAO Y B, CHU CH SH, HANG SH, et al. Quantum barriers with a polarization self-screening effect for GaN-based VCSELs to increase the electron-hole stimulated recombination and output performance[J]. Optical Materials Express, 2021, 11(12): 3984-3995. doi: 10.1364/OME.442246 [35] HADLEY G R, LEAR K L, WARREN M E, et al. Comprehensive numerical modeling of vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 1996, 32(4): 607-616. doi: 10.1109/3.488833 [36] HAN S H, LEE D Y, LEE S J, et al. Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes[J]. Applied Physics Letters, 2009, 94(23): 231123. doi: 10.1063/1.3153508 [37] LI SH B, WARE M, WU J, et al. Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN[J]. Applied Physics Letters, 2012, 101(12): 122103. doi: 10.1063/1.4753993 [38] BAO X L, SUN P, LIU S Q, et al. Performance improvements for AlGaN-based deep ultraviolet light-emitting diodes with the p-type and thickened last quantum barrier[J]. IEEE Photonics Journal, 2015, 7(1): 1400110. doi: 10.1109/JPHOT.2014.2387253 [39] SI Q Y, CHEN H Y, LI SH P, et al. Improved characteristics of AlGaN-based deep ultraviolet light-emitting diodes with superlattice p-type doping[J]. IEEE Photonics Journal, 2017, 9(3): 2200807. doi: 10.1109/JPHOT.2017.2699322