留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulations on the photoelectric performance of AlGaN-based ultraviolet VCSELs with a slope-shaped p-type layer

Wen Xin-xin JIA Wei ZHAI Guang-mei DONG Hai-liang ZHAO Chao LI Tian-bao XU Bing-she

文欣欣, 贾伟, 翟光美, 董海亮, 赵超, 李天保, 许并社. 基于渐变p型层的AlGaN紫外VCSEL外延结构设计和光电性能研究[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0027
引用本文: 文欣欣, 贾伟, 翟光美, 董海亮, 赵超, 李天保, 许并社. 基于渐变p型层的AlGaN紫外VCSEL外延结构设计和光电性能研究[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0027
Wen Xin-xin, JIA Wei, ZHAI Guang-mei, DONG Hai-liang, ZHAO Chao, LI Tian-bao, XU Bing-she. Numerical simulations on the photoelectric performance of AlGaN-based ultraviolet VCSELs with a slope-shaped p-type layer[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0027
Citation: Wen Xin-xin, JIA Wei, ZHAI Guang-mei, DONG Hai-liang, ZHAO Chao, LI Tian-bao, XU Bing-she. Numerical simulations on the photoelectric performance of AlGaN-based ultraviolet VCSELs with a slope-shaped p-type layer[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0027

基于渐变p型层的AlGaN紫外VCSEL外延结构设计和光电性能研究

详细信息
  • 中图分类号: TN248.4

Numerical simulations on the photoelectric performance of AlGaN-based ultraviolet VCSELs with a slope-shaped p-type layer

doi: 10.37188/CO.EN-2024-0027
Funds: This work was supported by the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (No. 2021SX-AT002 and No. 2022SX-TD018); the Key R & D Projects in Shanxi Province (No. 202302150101012); and the National Natural Science Foundation of China (Nos. 61604104, No. 21972103, No. 61904120).
More Information
    Author Bio:

    WEN Xin-xin (1999—), M.Sc, Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology. Her research focuses on optoelectronic materials and devices. E-mail: wxx2583692024@163.com

    JIA Wei (1983—), Ph.D., Senior Experimentalist, Master's Supervisor, Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology. His main research focuses on semiconductor optoelectronic materials and devices. E-mail: jiawei@tyut.edu.cn

    Corresponding author: jiawei@tyut.edu.cn
  • 摘要:

    由于GaN基紫外VCSEL中的空穴注入层p型掺杂效率较低,导致多量子阱中不能实现有效空穴注入,这极大的降低了紫外VCSEL的光电性能。因此本文设计了一种基于AlGaN的UV VCSEL中使用渐变HIL和EBL结构。该结构能够提高空穴注入效率,使空穴注入层中的空穴浓度增加,也能够使电子阻挡层和空穴注入层界面处的空穴势垒高度降低,从而利于空穴注入。我们使用商用软件PICS3D构建了该结构,并对能带结构以及载流子浓度等进行了模拟和理论分析。通过空穴注入层Al组分渐变引入极化掺杂增加空穴浓度从而提高空穴注入效率。在此基础上电子阻挡层渐变消除了空穴注入层和电子阻挡层界面的空穴突变势垒,使价带更平滑。这提高了多量子阱中的受激辐射复合速率,增强了激光功率。因此,渐变的p型层设计可以提升紫外VCSEL的光电性能。

     

  • Figure 1.  Structure of GaN-based VCSELs

    Figure 2.  I-V and L-I characteristic plots of GaN-based VCSELs at 20 mA

    Figure 3.  (a) Radial hole concentrations in MQWs and (b) radial hole current densities for different structures at 20 mA

    Figure 4.  (a) Radial electron concentration distributions of MQWs and (b) radial electron current density distributions in different structures at 20 mA

    Figure 5.  Stimulated recombination rates in the active region for different structures at 20 mA

    Figure 6.  Relationship between WPE and the injection current

    Figure 7.  Energy band diagrams of the active region and p-type doping regions of structures A, B, C, and D at 20 mA

  • [1] TAKEUCHI T, KAMIYAMA S, IWAYA M, et al. GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors[J]. Reports on Progress in Physics, 2019, 82(1): 012502. doi: 10.1088/1361-6633/aad3e9
    [2] CHEN Y H, MEI Y, ZHENG ZH M, et al. Effects of different current confinement layers in GaN-based VCSELs[J]. AIP Advances, 2023, 13(7): 075114. doi: 10.1063/5.0155159
    [3] XU R B, MEI Y, XU H, et al. Effects of lateral optical confinement in GaN VCSELs with double dielectric DBRs[J]. IEEE Photonics Journal, 2020, 12(2): 1501708. doi: 10.1109/JPHOT.2020.2979564
    [4] ELAFANDY R T, KANG J H, MI CH Z Y, et al. Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers[J]. ACS Photonics, 2021, 8(4): 1041-1047. doi: 10.1021/acsphotonics.1c00211
    [5] ELAFANDY R T, KANG J H, LI B J, et al. Room-temperature operation of c-plane GaN vertical cavity surface emitting laser on conductive nanoporous distributed Bragg reflector[J]. Applied Physics Lettrers, 2020, 117(1): 011101. doi: 10.1063/5.0012281
    [6] HAYASHI K, HAMAGUCHI T, KEARNS J A, et al. Narrow emission of blue GaN-based vertical-cavity surface-emitting lasers with a curved mirror[J]. IEEE Photonics Jouranl, 2022, 14(4): 1536905. doi: 10.1109/JPHOT.2022.3165665
    [7] LEONARD J T, YOUNG E C, YONKEE B P, et al. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts[J]. Proceedings of SPIE, 2016, 9748: 97481B. doi: 10.1117/12.2206211
    [8] YANG J, ZHAO D G, LIU Z SH, et al. Room temperature continuous-wave operated 2.0-W GaN-based ultraviolet laser diodes[J]. Optics Letters, 2022, 47(7): 1666-1668. doi: 10.1364/OL.454340
    [9] YANG J, ZHAO D G, LIU Z SH, et al. A 357.9 nm GaN/AlGaN multiple quantum well ultraviolet laser diode[J]. Jouranl of Semiconductors, 2022, 43(1): 010501. doi: 10.1088/1674-4926/43/1/010501
    [10] ZHENG ZH M, WANG Y K, HOO J, et al. High-quality AlGaN epitaxial structures and realization of UVC vertical-cavity surface-emitting lasers[J]. Science China Materials, 2023, 66(5): 1978-1988. doi: 10.1007/s40843-022-2310-5
    [11] WANG Y K, ZHENG ZH M, LONG H, et al. Development and challenges of nitride vertical-cavity surface-emitting lasers (invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251203. doi: 10.3788/gzxb20225102.0251203
    [12] QIU X J, ZHANG Y H, HANG SH, et al. Enhancing the lateral current injection by modulating the doping type in the p-type hole injection layer for InGaN/GaN vertical cavity surface emitting lasers[J]. Optics Express, 2020, 28(12): 18035-18048. doi: 10.1364/OE.396482
    [13] HAN L, GAO Y B, HANG SH, et al. Impact of p-AlGaN/GaN hole injection layer on GaN-based vertical cavity surface emitting laser diodes [invited][J]. Chinese Optics Letters, 2022, 20(3): 031402. doi: 10.3788/COL202220.031402
    [14] PENG F, YANG CH, DENG S Y, et al. Simulation of a high-performance enhancement-mode HFET with back-to-back graded AlGaN layers[J]. Science China Information Sciences, 2019, 62(6): 62403. doi: 10.1007/s11432-018-9503-9
    [15] VERMA J, ISLAM S M, PROTASENKO V, et al. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures[J]. Applied Physics Letters, 2014, 104(2): 021105. doi: 10.1063/1.4862064
    [16] ZHANG L, DING K, YAN J C, et al. Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure[J]. Applied Physics Letters, 2010, 97(6): 062103. doi: 10.1063/1.3478556
    [17] ZHANG H CH, HUANG CH, SONG K, et al. Compositionally graded III-nitride alloys: building blocks for efficient ultraviolet optoelectronics and power electronics[J]. Reports on Progress in Physics, 2021, 84(4): 044401. doi: 10.1088/1361-6633/abde93
    [18] XING ZH Y, ZHANG H CH, SUN Y, et al. Normally-OFF AlGaN/GaN-based HEMTs with decreasingly graded AlGaN cap layer[J]. Journal of Physics D: Applied Physics, 2023, 56(2): 025105. doi: 10.1088/1361-6463/ac99e9
    [19] ZHANG H CH, LIANG F ZH, YANG L, et al. Superior AlGaN/GaN-based phototransistors and arrays with reconfigurable triple-mode functionalities enabled by voltage-programmed two-dimensional electron gas for high-quality imaging[J]. Advanced Materials, 2024, 36(36): 2405874. doi: 10.1002/adma.202405874
    [20] KOLBE T, KNAUER A, RASS J, et al. 234 nm far-ultraviolet-C light-emitting diodes with polarization-doped hole injection layer[J]. Applied Physics Letters, 2023, 122(19): 191101. doi: 10.1063/5.0143661
    [21] SATTER M, LOCHNER Z, KAO T T, et al. AlGaN-based vertical injection laser diodes using inverse tapered p-waveguide for efficient hole transport[J]. IEEE Journal of Quantum Electronics, 2014, 50(3): 166-173. doi: 10.1109/jqe.2014.2300757
    [22] LIU Y S, KAO T T, SATTER M, et al. Inverse-tapered p-waveguide for vertical hole transport in high-[Al] AlGaN emitters[J]. IEEE Photonics Technology Letters, 2015, 27(16): 1768-1771. doi: 10.1109/lpt.2015.2443053
    [23] LU L, DING G G, ZHANG Y, et al. Improved performance of AlGaN-based deep ultraviolet light-emitting diode using modulated-taper design for p-AlGaN layer[J]. Semiconductor Science and Technology, 2018, 33(3): 035008. doi: 10.1088/1361-6641/aaa8b2
    [24] LUO H W, LI J Z, LI M. Improved output power of GaN-based VCSEL with band-engineered electron blocking layer[J]. Micromachines, 2019, 10(10): 694. doi: 10.3390/mi10100694
    [25] CHENG CH, LEI Y, LIU ZH Q, et al. Performance improvement of light-emitting diodes with double superlattices confinement layer[J]. Journal of Semiconductors, 2018, 39(11): 114005. doi: 10.1088/1674-4926/39/11/114005
    [26] MONDAL R K, CHATTERJEE V, PAL S. Effect of step-graded superlattice electron blocking layer on performance of AlGaN based deep-UV light emitting diodes[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108: 233-237. doi: 10.1016/j.physe.2018.11.022
    [27] YANG W, LI D, LIU N Y, et al. Improvement of hole injection and electron overflow by a tapered AlGaN electron blocking layer in InGaN-based blue laser diodes[J]. Applied Physics Letters, 2012, 100(3): 031105. doi: 10.1063/1.3678197
    [28] WANG Y F, NIASS M I, WANG F, et al. Improvement of radiative recombination rate in deep ultraviolet laser diodes with step-like quantum barrier and aluminum-content graded electron blocking layer[J]. Chinese Physics B, 2020, 29(1): 017301. doi: 10.1088/1674-1056/ab592c
    [29] AZOFF E M. Closed-form method for solving the steady-state generalised energy-momentum conservation equations[J]. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 1987, 6(1): 25-30. doi: 10.1108/eb010297
    [30] TURIN V O. A modified transferred-electron high-field mobility model for GaN devices simulation[J]. Solid-State Electronics, 2005, 49(10): 1678-1682. doi: 10.1016/j.sse.2005.09.002
    [31] PELA R R, HSIAO C L, HULTMAN L, et al. Electronic and optical properties of core-shell InAlN nanorods: a comparative study via LDA, LDA-1/2, mBJ, HSE06, G0W0 and BSE methods[J]. Physical Chemistry Chemical Physics, 2024, 26(9): 7504-7514. doi: 10.1039/D3CP05295H
    [32] CHUANG CH M, CHENG Y H, WU Y R. Electro-optical numerical modeling for the design of UVA nitride-based vertical-cavity surface-emitting laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(1): 1700606. doi: 10.1109/JSTQE.2021.3114411
    [33] LAI C Y, HSU T M, CHANG W H, et al. Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy[J]. Journal of Applied Physics, 2002, 91(1): 531-533. doi: 10.1063/1.1426237
    [34] GAO Y B, CHU CH SH, HANG SH, et al. Quantum barriers with a polarization self-screening effect for GaN-based VCSELs to increase the electron-hole stimulated recombination and output performance[J]. Optical Materials Express, 2021, 11(12): 3984-3995. doi: 10.1364/OME.442246
    [35] HADLEY G R, LEAR K L, WARREN M E, et al. Comprehensive numerical modeling of vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 1996, 32(4): 607-616. doi: 10.1109/3.488833
    [36] HAN S H, LEE D Y, LEE S J, et al. Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes[J]. Applied Physics Letters, 2009, 94(23): 231123. doi: 10.1063/1.3153508
    [37] LI SH B, WARE M, WU J, et al. Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN[J]. Applied Physics Letters, 2012, 101(12): 122103. doi: 10.1063/1.4753993
    [38] BAO X L, SUN P, LIU S Q, et al. Performance improvements for AlGaN-based deep ultraviolet light-emitting diodes with the p-type and thickened last quantum barrier[J]. IEEE Photonics Journal, 2015, 7(1): 1400110. doi: 10.1109/JPHOT.2014.2387253
    [39] SI Q Y, CHEN H Y, LI SH P, et al. Improved characteristics of AlGaN-based deep ultraviolet light-emitting diodes with superlattice p-type doping[J]. IEEE Photonics Journal, 2017, 9(3): 2200807. doi: 10.1109/JPHOT.2017.2699322
  • 加载中
图(7)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  43
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-28
  • 录用日期:  2024-10-14
  • 网络出版日期:  2024-10-22

目录

    /

    返回文章
    返回