留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design optimization of a sensitivity-enhanced tilt sensor based on femtosecond fiber bragg grating

Nutsuglo Theophilus GUO Yong-xing ZHOU Wan-huan YU Hai-sheng REN Ru-hua SHEN Shun-an

NutsugloTheophilus, 郭永兴, 周万欢, 于海生, 任如华, 沈顺安. 基于飞秒光纤光栅的增敏型倾角传感器设计与优化[J]. 中国光学(中英文), 2025, 18(4): 908-920. doi: 10.37188/CO.EN-2024-0034
引用本文: NutsugloTheophilus, 郭永兴, 周万欢, 于海生, 任如华, 沈顺安. 基于飞秒光纤光栅的增敏型倾角传感器设计与优化[J]. 中国光学(中英文), 2025, 18(4): 908-920. doi: 10.37188/CO.EN-2024-0034
Nutsuglo Theophilus, GUO Yong-xing, ZHOU Wan-huan, YU Hai-sheng, REN Ru-hua, SHEN Shun-an. Design optimization of a sensitivity-enhanced tilt sensor based on femtosecond fiber bragg grating[J]. Chinese Optics, 2025, 18(4): 908-920. doi: 10.37188/CO.EN-2024-0034
Citation: Nutsuglo Theophilus, GUO Yong-xing, ZHOU Wan-huan, YU Hai-sheng, REN Ru-hua, SHEN Shun-an. Design optimization of a sensitivity-enhanced tilt sensor based on femtosecond fiber bragg grating[J]. Chinese Optics, 2025, 18(4): 908-920. doi: 10.37188/CO.EN-2024-0034

基于飞秒光纤光栅的增敏型倾角传感器设计与优化

详细信息
  • 中图分类号: TN253;TP212

Design optimization of a sensitivity-enhanced tilt sensor based on femtosecond fiber bragg grating

doi: 10.37188/CO.EN-2024-0034
Funds: Supported by the National Natural Science Foundation of China (No. 52105558,No. 52075397); the Project of Guangdong Province Science and Technology Plan (No. 2022A0505030019); the “14th Five Year Plan” Hubei Provincial Advantaged Characteristic Disciplines (Groups) Project of Wuhan University of Science and Technology (No. 2023B0502)
More Information
    Author Bio:

    NUTSUGLO Theophilus (1993—), male, born in Accra, Ghana, he earned his B.Sc. in Mechanical Engineering from Kwame Nkrumah University of Science and Technology, Ghana, in 2018. He is currently pursuing M.Sc. in Mechanical Engineering at Wuhan University of Science and Technology, Wuhan. His research interests focus on fiber Bragg grating sensing technology for structural health monitoring. E-mail: tnutsuglo@yahoo.com

    GUO Yong-xing (1986—), male, born in Runan, Henan province, he received the Ph.D. degrees in measurement control technology and instruments from the National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan, China, in 2014. He is currently a Professor in Wuhan University of Science and Technology. His research interests include optical fiber sensing technology for mechanical equipment, civil engineering, and robotics. E-mail: yongxing_guo@wust.edu.cn

    Corresponding author: yongxing_guo@wust.edu.cn
  • 摘要:

    面向结构健康监测领域中的倾角信息高精度监测需求,本文提出了一种基于飞秒光纤光栅的灵敏度增强型倾角传感器。首先,运用静力学原理对倾角传感器进行结构设计,通过设置偏离梁中性轴的光纤光栅,实现光纤光栅应变线性增加,进而提高传感器的灵敏度;接着,通过建立光纤光栅应变、力和中性轴偏离距离之间的关系,确定了产生最大应变所对应的最佳距离;然后,基于此优化方案设计制造了倾角传感器的原型并进行了实验测试。结果表明,倾角传感器最大灵敏度的光纤光栅偏离距离为4.4 mm,在−30°至30°的倾角范围内灵敏度达到了129.95 pm/°,线性度提高至0.9997,相较于传统的光纤光栅倾角传感器,灵敏度和线性度均得到了显著提升,同时还表现出了良好的重复性(误差<0.94%)、蠕变抗性(误差<0.30%)和温度稳定性(误差<0.90%)。结果证明该倾角传感器在结构健康监测中拥有着优秀的应用潜力。传感器已成功应用于地下管道项目中,对项目中钢支撑结构的倾角与变形进行了长期监测,进一步证明了其工程安全监测应用价值。

     

  • Figure 1.  (a) Sensor structure design. (b) Initial cantilever design structure. (c) Sensor assembly

    Figure 2.  Simulation results of (a) equivalent strain distribution by FEA and (b) the surfaces experiencing maximum strain

    Figure 3.  Designed cantilever structure

    Figure 4.  (a) The relation between the position distance from the neutral axis, applied force, and strain. (b) Amplified diagram showing the maximum strain of 1.0 N

    Figure 5.  (a) Optimized cantilever structure design and (b) the corresponding mass block design

    Figure 6.  Fabricated prototype of physical sensor. (a) Cantilever with prestressed FBGs. (b) Sensor structure design. (c) Assembled sensor

    Figure 7.  Tilt sensor calibration system

    Figure 8.  (a)Wavelength shifts of FBG1 and FBG2 for the four tilt tests. (b) Average wavelength shifts responses of FBG1 and FBG2

    Figure 9.  (a) Wavelength shifts difference of FBG1 and FBG2. (b) Linear fit for the average values of the wavelength shift difference of the optimized and initial design

    Figure 10.  Creep resistance test results

    Figure 11.  Temperature compensation test setup

    Figure 12.  Temperature compensation experimental results

    Figure 13.  Tilt sensor installation. (a) Underground pipeline bay. (b) Tilt sensor 1. (c) Tilt sensor 2. (d) FBG interrogator and PC

    Figure 14.  Tilt angle curve during the six-month monitoring period with the extraction of central value from the vibration signal for (a) tilt sensor 1 and (b) tilt sensor 2

    Figure 15.  Extracted central value for (a) tilt sensor 1 and (b) tilt sensor 2

    Table  1.   Material properties of brass and silica

    Properties Young’s Modulus Poisson’s Ratio
    Brass 100 GPa 0.33
    Silica 73 GPa 0.17
    下载: 导出CSV

    Table  2.   Sensitivity and linearity comparison between the initial and optimized design

    Property Sensitivity (pm/°) Linearity
    Initial design 95.90 0.9994
    Optimized design 129.95 0.9997
    下载: 导出CSV
  • [1] GHANBARI M, YAZDANPANAH M J. Delay compensation of tilt sensors based on MEMS accelerometer using data fusion technique[J]. IEEE Sensors Journal, 2015, 15(3): 1959-1966. doi: 10.1109/JSEN.2014.2366874
    [2] LIN W Y, CHEN C H, LEE M Y. Design and implementation of a wearable accelerometer-based motion/tilt sensing internet of things module and its application to bed fall prevention[J]. Biosensors, 2021, 11(11): 428. doi: 10.3390/bios11110428
    [3] XIAO F, CHEN G S, HULSEY J L. Monitoring bridge dynamic responses using fiber Bragg grating tiltmeters[J]. Sensors, 2017, 17(10): 2390. doi: 10.3390/s17102390
    [4] NORGIA M, BONIOLO I, TANELLI M, et al. Optical sensors for real-time measurement of motorcycle tilt angle[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(5): 1640-1649. doi: 10.1109/TIM.2008.2009421
    [5] ROMTRAIRAT P, VIRULSRI C, WATTANASIRI P, et al. A performance study of a wearable balance assistance device consisting of scissored-pair control moment gyroscopes and a two-axis inclination sensor[J]. Journal of Biomechanics, 2020, 109: 109957. doi: 10.1016/j.jbiomech.2020.109957
    [6] DIKSHIT A, SATYAM N. Real-time term monitoring of unstable slopes of Darjeeling Himalayas, India[C]. Proceedings of the 21st EGU General Assembly, EGU, 2019: 3818.
    [7] HA D W, PARK H S, CHOI S W, et al. A wireless MEMS-based inclinometer sensor node for structural health monitoring[J]. Sensors, 2013, 13(12): 16090-16104. doi: 10.3390/s131216090
    [8] LI K, ZHAO Y H, LI Y Q, et al. Fiber Bragg grating biaxial tilt sensor using one optical fiber[J]. Optik, 2020, 218: 164973. doi: 10.1016/j.ijleo.2020.164973
    [9] RAO K, LIU H F, WEI X L, et al. A high-resolution area-change-based capacitive MEMS tilt sensor[J]. Sensors and Actuators A: Physical, 2020, 313: 112191. doi: 10.1016/j.sna.2020.112191
    [10] ZHAN F, LI P L, FU J H, et al. Liquid metal-based angle detection sensor[J]. ACS Applied Electronic Materials, 2023, 5(7): 3571-3578. doi: 10.1021/acsaelm.3c00228
    [11] YAVSAN E. A planar coil-based novel two-channel differential inductive tilt sensor with a simple pendulum mechanism[J]. IEEE Sensors Journal, 2024, 24(5): 6286-6292. doi: 10.1109/JSEN.2024.3351952
    [12] ŁUCZAK S, ZAMS M, DĄBROWSKI B, et al. Tilt sensor with recalibration feature based on MEMS accelerometer[J]. Sensors, 2022, 22(4): 1504. doi: 10.3390/s22041504
    [13] OLARU R, COTAE C. Tilt sensor with magnetic liquid[J]. Sensors and Actuators A: Physical, 1997, 59(1-3): 133-135. doi: 10.1016/S0924-4247(97)80162-8
    [14] SAHOTA J K, GUPTA N, DHAWAN D. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review[J]. Optical Engineering, 2020, 59(6): 060901.
    [15] RAO Y J. In-fibre Bragg grating sensors[J]. Measurement Science and Technology, 1997, 8(4): 355-375. doi: 10.1088/0957-0233/8/4/002
    [16] JIANG SH CH, WANG J, SUI Q M. Distinguishable circumferential inclined direction tilt sensor based on fiber Bragg grating with wide measuring range and high accuracy[J]. Optics Communications, 2015, 355: 58-63. doi: 10.1016/j.optcom.2015.05.055
    [17] MA G M, LI CH R, QUAN J T, et al. A fiber Bragg grating tension and tilt sensor applied to icing monitoring on overhead transmission lines[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2163-2170. doi: 10.1109/TPWRD.2011.2157947
    [18] LIANG M F, FANG X Q, LI SH, et al. A fiber Bragg grating tilt sensor for posture monitoring of hydraulic supports in coal mine working face[J]. Measurement, 2019, 138: 305-313. doi: 10.1016/j.measurement.2019.02.060
    [19] YANG R G, BAO H L, ZHANG SH Q, et al. Simultaneous measurement of tilt angle and temperature with pendulum-based fiber Bragg grating sensor[J]. IEEE Sensors Journal, 2015, 15(11): 6381-6384. doi: 10.1109/JSEN.2015.2458894
    [20] GUO Y X, ZHANG D SH, ZHOU Z D, et al. Cantilever based FBG vibration transducer with sensitization structure[J]. Optoelectronics Letters, 2013, 9(6): 410-413. doi: 10.1007/s11801-013-3139-7
    [21] NUTSUGLO T, GUO CH CH, LI Q, et al. Sensitivity-enhanced tilt sensor based on femtosecond fiber bragg grating[C]. Proceedings of 2023 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence, IEEE, 2023: 1-6.
    [22] GUO Y X, HU P, XIONG L, et al. Design and investigation of a fiber Bragg grating tilt sensor with vibration damping[J]. IEEE Sensors Journal, 2023, 23(3): 2193-2203. doi: 10.1109/JSEN.2022.3229397
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  56
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 修回日期:  2024-12-02
  • 录用日期:  2024-12-27
  • 网络出版日期:  2025-01-08

目录

    /

    返回文章
    返回