留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influencing factor analysis of the Principal Component Analysis for the characterization and restoration of phase aberrations resulting from atmospheric turbulence

WANG Jiangpuzhen WANG Zhiqiang ZHANG Jinghui QIAO Chunhong FAN Chengyu

王姜菩真, 王志强, 张京会, 乔春红, 范承玉. 基于主成分分析法的大气湍流相位畸变表征和还原影响因素分析[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0035
引用本文: 王姜菩真, 王志强, 张京会, 乔春红, 范承玉. 基于主成分分析法的大气湍流相位畸变表征和还原影响因素分析[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2024-0035
WANG Jiangpuzhen, WANG Zhiqiang, ZHANG Jinghui, QIAO Chunhong, FAN Chengyu. Influencing factor analysis of the Principal Component Analysis for the characterization and restoration of phase aberrations resulting from atmospheric turbulence[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0035
Citation: WANG Jiangpuzhen, WANG Zhiqiang, ZHANG Jinghui, QIAO Chunhong, FAN Chengyu. Influencing factor analysis of the Principal Component Analysis for the characterization and restoration of phase aberrations resulting from atmospheric turbulence[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0035

基于主成分分析法的大气湍流相位畸变表征和还原影响因素分析

详细信息
  • 中图分类号: TP394.1;TH691.9

Influencing factor analysis of the Principal Component Analysis for the characterization and restoration of phase aberrations resulting from atmospheric turbulence

doi: 10.37188/CO.EN-2024-0035
Funds: This work has been supported by the National Natural Science Foundation of China (No. 12273084); This work has also been supported by Science and Technology Innovation Fund for Key Laboratories of the Chinese Academy of Sciences (No. CXJJ-225028)
More Information
    Author Bio:

    Jiangpuzhen Wang (1998—), PhD student, University of Science and Technology of China (USTC). Her research interests are on the correction of phase aberrations resulting from atmospheric turbulence. E-mail: puzhen98@mail.ustc.edu.cn

    Corresponding author: zqwang@aiofm.ac.cncyfan@aiofm.ac.cn
  • 摘要:

    为了有效表征、还原大气湍流造成的相位畸变,解决传统Zernike多项式方法引起的相位还原高频信息不足问题,提出了基于主成分分析法的畸变相位特征表征、还原方法,对可能影响主成分精度从而影响还原效果的因素进行研究。首先建立了几组包含满足Von-Karman功率谱的畸变相位的原始数据集,几组数据集样本数量不等,并生成了D/r0 采样间隔分别为1和10的样本空间,D/r0 用于描述湍流强度,其中r0 是大气相干长度,D是光瞳直径。接着建立了不同湍流强度下畸变相位的测试集数据。之后从不同原始数据集中提取对应的主成分,并分别使用相同项数的主成分与Zernike多项式对同一组测试集畸变相位进行还原。最终对比还原结果,分析原始数据样本量和D/r0 采样间隔对主成分精度的影响。实验结果表明结果:更大的D/r0 采样间隔可以在原始数据量有限的情况下保证主成分的泛化能力和鲁棒性,从而帮助实际应用中快速实现模型的高精度部署;在测试集D/r0 =24的相对湍流较强的环境下,使用34阶主成分可以将校正后光斑Strehl比从原始的0.007提升至0.1585,而同样使用34阶Zernike还原后的光斑Strehl比仅为0.0215,几乎没有校正效果。可以看出基于主成分分析法的大气湍流相位畸变表征和还原方法优于Zernike多项式,可以为基于模型和深度学习的自适应光学校正提供参考。

     

  • 图 1  不同数据量提取的PCs与ZPs还原相位畸变的效果示例(a)$ D/{r}_{0}=8, $使用8项模式;(b)$ D/{r}_{0}=16, $使用19项模式;(c)$ D/{r}_{0}=24, $使用34项模式

    Figure 1.  Examples of restoration by ZPs vs PCs obtained from different sample space sizes (a) $D/{r_0} = 8 ,$using the first 8 terms; (b) $D/{r_0} = 16 ,$ using the first 19 terms; (c) $D/{r_0} = 24 ,$using the first 34 terms.

    图 2  相同湍流强度下使用不同数量PCs模式的还原效果示例

    Figure 2.  Examples of restoration by 8, 19, and 34 PCs (a) $D/{r_0} = 8$; (b) $D/{r_0} = 16$; (c) $D/{r_0} = 24$

    图 3  使用不同数据量提取的PCs与ZPs还原相位畸变后均值SR对比

    Figure 3.  Comparison of mean Strehl ratio after phase aberration restoration by ZPs and PCs obtained from different sample space sizes

    图 4  使用A-5000B-5000提取的PCs还原相位畸变后均值SR对比

    Figure 4.  Comparison of the mean Strehl ratio after phase aberration restoration by PCs obtained from A-5000 and B-5000

    图 5  使用相等数量的PCs(从B-5000提取)和ZPs模式还原相位畸变效果示例(a)$ D/{r}_{0}=8, $使用8项模式;(b)$ D/{r}_{0}= $$ 16, $使用19项模式;(c)$ D/{r}_{0}=24, $使用34项模式

    Figure 5.  Examples of restoration of phase aberrations by the equivalent terms of ZPs vs PCs obtained from B-5000 (a) $D/{r_0} = 8 ,$ using the first 8 terms; (b) $D/{r_0} = 16 ,$ using the first 19 terms; (c) $D/{r_0} = 24 ,$ using the first 34 terms.

    表  1  Comparison of the mean Strehl ratio after phase restoration by PCs obtained from B-5000 and A-30000 (The first row 4-28 indicates the $D/{r_0}$ of test sets)

    Table  1.   Comparison of the mean Strehl ratio after phase restoration by PCs obtained from B-5000 and A-30000 (The first row 4-28 indicates the $D/{r_0}$ of test sets)

    Terms D/r0
    N 4 8 12 16 20 24 28
    8 5000 0.719 0.3563 0.1437 0.0515 0.0177 0.0072 0.0046
    30000 0.7204 0.3577 0.1439 0.0521 0.0176 0.0073 0.0047
    19 5000 0.8496 0.5989 0.368 0.204 0.103 0.0482 0.0235
    30000 0.8505 0.6011 0.3702 0.2049 0.1041 0.0488 0.024
    34 5000 0.9101 0.7412 0.5547 0.3925 0.2582 0.1616 0.0978
    30000 0.9108 0.7436 0.5582 0.3978 0.2636 0.1644 0.1002
    下载: 导出CSV
  • [1] MAHAJAN V N. Aberrations of diffracted wave fields. I. Optical imaging[J]. Journal of the Optical Society of America A, 2000, 17(12): 2216-2222. doi: 10.1364/JOSAA.17.002216
    [2] ANGEL J R P, WIZINOWICH P, LLOYD-HART M, et al. Adaptive optics for array telescopes using neural-network techniques[J]. Nature, 1990, 348(6298): 221-224. doi: 10.1038/348221a0
    [3] SANDLER D G, BARRETT T K, PALMER D A, et al. Use of a neural network to control an adaptive optics system for an astronomical telescope[J]. Nature, 1991, 351(6324): 300-302. doi: 10.1038/351300a0
    [4] JIA P, MA M Y, CAI D M, et al. Compressive Shack–Hartmann wavefront sensor based on deep neural networks[J]. Monthly Notices of the Royal Astronomical Society, 2021, 503(3): 3194-3203. doi: 10.1093/mnras/staa4045
    [5] HARTLIEB S, WANG ZH, RÜDINGER A, et al. Large dynamic range Shack–Hartmann wavefront sensor based on holographic multipoint generation and pattern correlation[J]. Optical Engineering, 2024, 63(2): 024107.
    [6] VOLKOV M V, BOGACHEV V A, STARIKOV F A, et al. Numerical study of dynamic adaptive phase correction of radiation turbulent distortions and estimation of their frequency bandwidth with a Shack–Hartmann wavefront sensor[J]. Atmospheric and Oceanic Optics, 2022, 35(3): 250-257. doi: 10.1134/S1024856022030174
    [7] LI P, TANG F, WANG X ZH. Relationship between shear ratio and reconstruction accuracy in lateral shearing interferometry[J]. Optical Engineering, 2020, 59(3): 034113.
    [8] SONG J W, MIN J W, YUAN X, et al. Quadriwave lateral shearing interferometry quantitative phase imaging based on 2D Ronchi phase grating[J]. Acta Photonica Sinica, 2022, 51(11): 1118001. (in Chinese). doi: 10.3788/gzxb20225111.1118001
    [9] SINHA A, LEE J, LI SH, et al. Lensless computational imaging through deep learning[J]. Optica, 2017, 4(9): 1117-1125. doi: 10.1364/OPTICA.4.001117
    [10] CHEN M A, JIN X Q, LI SH B, et al. Compensation of turbulence-induced wavefront aberration with convolutional neural networks for FSO systems[J]. Chinese Optics Letters, 2021, 19(11): 110601. doi: 10.3788/COL202119.110601
    [11] LOHANI S, GLASSER R T. Turbulence correction with artificial neural networks[J]. Optics Letters, 2018, 43(11): 2611-2614. doi: 10.1364/OL.43.002611
    [12] GUO Y M, ZHONG L B, MIN L, et al. Adaptive optics based on machine learning: a review[J]. Opto-Electronic Advances, 2022, 5(7): 200082. doi: 10.29026/oea.2022.200082
    [13] PAINE S W, FIENUP J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 2018, 43(6): 1235-1238. doi: 10.1364/OL.43.001235
    [14] NISHIZAKI Y, VALDIVIA M, HORISAKI R, et al. Deep learning wavefront sensing[J]. Optics Express, 2019, 27(1): 240-251. doi: 10.1364/OE.27.000240
    [15] GE X L, ZHU L CH, GAO Z Y, et al. Experimental demonstration of wavefront reconstruction and correction techniques for variable targets based on distorted grating and deep learning[J]. Optics Express, 2024, 32(10): 17775-17792. doi: 10.1364/OE.519163
    [16] WANG Q T, TONG SH F, XU Y H. On simulation and verification of the atmospheric turbulent phase screen with Zernike polynomials[J]. Infrared and Laser Engineering, 2013, 42(7): 1907-1911. (in Chinese). doi: 10.3969/j.issn.1007-2276.2013.07.046
    [17] SIDDIK A B, SANDOVAL S, VOELZ D, et al. Deep learning estimation of modified Zernike coefficients and recovery of point spread functions in turbulence[J]. Optics Express, 2023, 31(14): 22903-22913. doi: 10.1364/OE.493229
    [18] LV H L, FU SH J, ZHANG C M, et al. Speckle noise reduction of multi-frame optical coherence tomography data using multi-linear principal component analysis[J]. Optics Express, 2018, 26(9): 11804-11818. doi: 10.1364/OE.26.011804
    [19] ZHANG Q, XIAO G, LAN Y Q, et al. Atmospheric turbulence detection by PCA approach[J]. Aerospace Systems, 2019, 2(1): 15-20. doi: 10.1007/s42401-018-0012-1
    [20] TERRERI A, PEDICHINI F, DEL MORO D, et al. Neural networks and PCA coefficients to identify and correct aberrations in adaptive optics[J]. Astronomy & Astrophysics, 2022, 666: A70.
    [21] SCHMIDT J D. Numerical Simulation of Optical Wave Propagation with Examples in MATLAB[M]. Bellingham: SPIE, 2010.
    [22] NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207-211. doi: 10.1364/JOSA.66.000207
    [23] LANE R G, GLINDEMANN A, DAINTY J C. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 1992, 2(3): 209-224. doi: 10.1088/0959-7174/2/3/003
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  30
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-14
  • 录用日期:  2025-01-06
  • 网络出版日期:  2025-01-21

目录

    /

    返回文章
    返回