留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tunable reflective spin-decoupled encoding metasurface based on Dirac semimetals

ZHANG Hui-yun HAO Xiao-yu ZHENG Si-yu WANG Yu LIU Yang LIU Meng ZHANG Jin-juan ZHANG Yuping

ZHANG Hui-yun, HAO Xiao-yu, ZHENG Si-yu, WANG Yu, LIU Yang, LIU Meng, ZHANG Jin-juan, ZHANG Yuping. Tunable reflective spin-decoupled encoding metasurface based on Dirac semimetals[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0037
Citation: ZHANG Hui-yun, HAO Xiao-yu, ZHENG Si-yu, WANG Yu, LIU Yang, LIU Meng, ZHANG Jin-juan, ZHANG Yuping. Tunable reflective spin-decoupled encoding metasurface based on Dirac semimetals[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0037

Tunable reflective spin-decoupled encoding metasurface based on Dirac semimetals

doi: 10.37188/CO.EN-2024-0037
Funds: Supported by National Natural Science Foundation of China (No. 62375158, No. 62105187); Natural Science Foundation of Shandong Province (No. ZR2021QF010); Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province (No. 2022KJ216).
More Information
  • Figure 1.  (a) 3D schematic of the designed meta-atom. (b) Top view of the DSM patch in 2D. (c) Top view of the gold patch in 2D.

    Figure 2.  When EF = 6 meV (a) simulated reflectance spectral amplitude and phase of 8 cell parameters of gold patches at x-polarized incidence. (b) 8 meta-atoms covering a 2π phase range at 45°intervals under linearly polarized wave incidence.

    Figure 3.  Selected 16 meta-atoms in a 2-bit phase-modulated gold patch structure in x-polarization and y-polarization.

    Figure 4.  When EF = 80 meV (a) Simulated reflectance spectral amplitude and phase of 8 cell parameters of DSMs patch at x-polarized incidence. (b) 8 metaparticles covering a 2π phase range at 45°intervals under linearly polarized wave incidence.

    Figure 5.  Selected 16 meta-atoms in the 2-bit phase-modulated DSMs patch structure in x-polarization and y-polarization.

    Figure 6.  When EF = 6 meV (a, e) Vortex phase distributions for l = −2 with l = 1. (b, f) Phase distribution of gradients varying along the y-axis as well as the x-axis. (c, g) reflection coding map under LCP wave and RCP wave incidence. (d, h) 3D far-field map under LCP wave and RCP wave incidence. (i, j) 2D maps under the incidence of LCP wave and RCP wave. (k, l) vortex phases under incidence of LCP wave and RCP wave.

    Figure 7.  When EF = 80 meV (a, e) reflection coding map under LCP wave and RCP wave incidence. (b, f) 3D far-field map under LCP wave and RCP wave incidence. (c, g) 2D maps under the incidence of LCP wave and RCP wave. (d, h) vortex phases under incidence of LCP wave and RCP wave.

  • [1] WANG M T, LIAO D SH, DAI J Y, et al. Dual-polarized reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4539-4548. doi: 10.1109/TAP.2022.3140506
    [2] LUO X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201, doi: 10.1007/s11433-015-5688-1.
    [3] HUANG CH, PAN W B, MA X L, et al. Multi-spectral metasurface for different functional control of reflection waves[J]. Scientific Reports, 2016, 6: 23291. doi: 10.1038/srep23291
    [4] LI L L, CUI T J, JI W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
    [5] LI ZH Y, LI S J, HAN B W, et al. Quad-band transmissive metasurface with linear to dual-circular polarization conversion simultaneously[J]. Advanced Theory and Simulations, 2021, 4(8): 2100117. doi: 10.1002/adts.202100117
    [6] XING W T, SI L M, DONG L, et al. Rapid design of hybrid mechanism metasurface with random coding for terahertz dual-band RCS reduction[J]. Optics Express, 2023, 31(17): 28444-28458. doi: 10.1364/OE.496423
    [7] YUAN Y Y, ZHANG K, RATNI B, et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces[J]. Nature Communications, 2020, 11(1): 4186. doi: 10.1038/s41467-020-17773-6
    [8] LI S J, LI ZH Y, HUANG G SH, et al. Digital coding transmissive metasurface for multi-OAM-beam[J]. Frontiers of Physics, 2022, 17(6): 62501. doi: 10.1007/s11467-022-1179-9
    [9] CHEN P, MA L L, HU W, et al. Chirality invertible superstructure mediated active planar optics[J]. Nature Communications, 2019, 10(1): 2518. doi: 10.1038/s41467-019-10538-w
    [10] CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218, doi: 10.1038/lsa.2014.99.
    [11] ZHANG ZH X, GAO L. 2-bit coding metasurface with a double layer random flip structure for wide band diffuse reflection and reciprocity protected transmission[J]. Optics Express, 2023, 31(20): 32253-32262. doi: 10.1364/OE.501272
    [12] LIU SH, CUI T J, XU Q, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light: Science & Applications, 2016, 5(5): e16076, doi: 10.1038/lsa.2016.76.
    [13] ZHANG L, LIU SH, LI L L, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36447-36455. doi: 10.1021/acsami.7b12468
    [14] CHENG G, SI L M, SHEN Q T, et al. Transmissive Pancharatnam-Berry metasurfaces with stable amplitude and precise phase modulations using dartboard discretization configuration[J]. Optics Express, 2023, 31(19): 30815-30831. doi: 10.1364/OE.501702
    [15] CHONG A, WAN CH H, CHEN J, et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J]. Nature Photonics, 2020, 14(6): 350-354. doi: 10.1038/s41566-020-0587-z
    [16] GUO Y H, ZHANG SH C, PU M B, et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation[J]. Light: Science & Applications, 2021, 10(1): 63, doi: 10.1038/s41377-021-00497-7.
    [17] ZHANG K, YUAN Y Y, DING X M, et al. High-efficiency metalenses with switchable functionalities in microwave region[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28423-28430. doi: 10.1021/acsami.9b07102
    [18] LI J SH, CHEN J ZH. Simultaneous and independent regulation of circularly polarized terahertz wave based on metasurface[J]. Optics Express, 2022, 30(12): 20298-20310. doi: 10.1364/OE.458810
    [19] WANG F, ZHANG Y B, TIAN CH SH, et al. Gate-variable optical transitions in graphene[J]. Science, 2008, 320(5873): 206-209. doi: 10.1126/science.1152793
    [20] IYER P P, PENDHARKAR M, SCHULLER J A. Electrically reconfigurable metasurfaces using heterojunction resonators[J]. Advanced Optical Materials, 2016, 4(10): 1582-1588. doi: 10.1002/adom.201600297
    [21] DU ZH Q, HE C H, XIN J H, et al. Terahertz dynamic multichannel holograms generated by spin-multiplexing reflective metasurface[J]. Optics Express, 2024, 32(1): 248-259. doi: 10.1364/OE.510046
    [22] ZHANG Y P, JIANG CH Y, LI ZH K, et al. Circularly polarized terahertz wave independently controlled tunable spin-decoupled metasurface[J]. Results in Physics, 2024, 56: 107287. doi: 10.1016/j.rinp.2023.107287
    [23] CUI T J, LI L L, LIU SH, et al. Information metamaterial systems[J]. iScience, 2020, 23(8): 101403. doi: 10.1016/j.isci.2020.101403
    [24] XU J SH, LIU W W, SONG ZH Y. Terahertz dynamic beam steering based on graphene coding metasurfaces[J]. IEEE Photonics Journal, 2021, 13(4): 4600409. doi: 10.1109/JPHOT.2021.3098728
    [25] MA H R, YANG J J, CHEN T T, et al. Tunable metasurface for independent controlling radar stealth properties via geometric and propagation phase modulation[J]. Optics Express, 2023, 31(7): 11760-11774. doi: 10.1364/OE.485132
    [26] DING G W, CHEN K, LUO X Y, et al. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion[J]. Physical Review Applied, 2019, 11(4): 044043. doi: 10.1103/PhysRevApplied.11.044043
    [27] KOTOV O V, LOZOVIK Y E. Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films[J]. Physical Review B, 2016, 93(23): 235417. doi: 10.1103/PhysRevB.93.235417
    [28] JIANG CH Y, LI ZH K, LV X Y, et al. Active modulation of terahertz vortex beams by Dirac semimetals-based space-time-coding metasurface[J]. Optics Communications, 2023, 540: 129506. doi: 10.1016/j.optcom.2023.129506
    [29] XIN J H, DU ZH Q, ZHOU Z K, et al. Optical reflective metasurfaces enable spin-decoupled OAM and focusing[J]. Physical Chemistry Chemical Physics, 2023, 25(40): 27008-27016. doi: 10.1039/d3cp02321d
    [30] HE C H, PAN Z M, SONG ZH Y. Manipulating spin-dependent wavefronts of vortex beams via plasmonic metasurfaces[J]. Annalen der Physik, 2023, 535(10): 2300235. doi: 10.1002/andp.202300235
  • 加载中
图(7)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  10
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-12-27

目录

    /

    返回文章
    返回