留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evaluation of restoration effects for city walls based on terahertz-infrared integrated technology

MENG Tian-hua ZHAO Guo-zhong XU Shi-xiang ZHANG Hai-jiao LI Bang-quan HU Wei-dong

孟田华, 赵国忠, 许世祥, 张海蛟, 李榜全, 胡伟东. 基于太赫兹-红外融合技术的城墙修复效果评估[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0016
引用本文: 孟田华, 赵国忠, 许世祥, 张海蛟, 李榜全, 胡伟东. 基于太赫兹-红外融合技术的城墙修复效果评估[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0016
MENG Tian-hua, ZHAO Guo-zhong, XU Shi-xiang, ZHANG Hai-jiao, LI Bang-quan, HU Wei-dong. Evaluation of restoration effects for city walls based on terahertz-infrared integrated technology[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0016
Citation: MENG Tian-hua, ZHAO Guo-zhong, XU Shi-xiang, ZHANG Hai-jiao, LI Bang-quan, HU Wei-dong. Evaluation of restoration effects for city walls based on terahertz-infrared integrated technology[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0016

基于太赫兹-红外融合技术的城墙修复效果评估

详细信息
  • 中图分类号: O439

Evaluation of restoration effects for city walls based on terahertz-infrared integrated technology

doi: 10.37188/CO.EN-2025-0016
Funds: Supported by the National Key Research and Development Program of China (No. 2021YFB3200100); the Applied Basic Research Projects of Shanxi Province (No. 202203021221212); the Special Fund of Shanxi Datong University (No. 2024YGZD06)
More Information
    Author Bio:

    MENG Tian-hua (1980—), female, born in Datong, Shanxi Province, PhD, Associate Professor, Master’s Supervisor. She obtained her Ph.D. degree from China University of Geosciences (Beijing) in 2014, mainly engaged in research on terahertz spectroscopy, and nondestructive testing technology for cultural heritage diagnostics. E-mail: mengtianhua1118@126.com

    HU Wei-dong (1975—), male, born in Shuozhou, Shanxi Province, PhD, Professor, Doctoral Supervisor. He obtained his Ph.D. degree from Beijing Institute of Technology in 2004. His research interests include radar cross section measurement, microwave remote sensing, and terahertz imaging. E-mail: hoowind@bit.edu.cn

    Corresponding author: hoowind@bit.edu.cn
  • 摘要:

    为了对古城墙修复性能进行科学评估,本研究以明代得胜堡长城为对象,采用太赫兹时域光谱(THz-TDS)与红外热成像技术对其土坯砖垒砌法修复段(1区)、保存完好段(2区)和逐层夯筑法修复段(3区)进行检测分析。结果显示:1区的THz光谱数据(时延为3.72 ps、折射率2.224)与原始墙体(2区时延3.02 ps、折射率2.107)差异显著,而3区THz光谱数据(时延3.12 ps、折射率2.098)与2区的几乎一致;红外热像图也表明3区的热均匀性更好,裂缝、毛细现象、生物病害的发生率更低,基本达到了“修旧如旧”的目的。因此,将城墙区域的红外热像图与原位取样的THz光谱相结合方法,不仅可以对修复性能进行定量评估,而且可以为传统工艺科学化评价提供新手段。

     

  • Figure 1.  The city walls experimental plot in Desheng Fortress.

    Figure 2.  Distribution schematic diagram of the Desheng Fortress. (a) Adobe brick masonry repaired section. (b) Well-preserved eastern section. (c) The traditional layer-by-layer ramming repaired section.

    Figure 3.  Terahertz time-domain spectrometer. (a) Inside of the THz-TDS system. (b) Schematic diagram of THz detection and sampling. (c) Sample holder for transmission measurements.

    Figure 4.  THz spectra of the soil samples from Desheng Fortress. (a) Time-domain spectra. (b) Absorption coefficient spectra. (c) Refractive index spectra. (d) Average refractive index spectra.

    Figure 5.  Visible light images and infrared images of three randomly selected sub-regions in the No.1 test region. (a) & (b): Area 1. (c) & (d): Area 2. (e) & (f): Area 3.

    Figure 6.  Visible light images and infrared images of two minimally weathered sub-regions in the No.2 test region. (a) & (b): Area 1. (c) & (d): Area 2.

    Figure 7.  Visible light images and infrared images of three randomly selected sub-regions in the No.3 test region. (a) & (b): Area 1. (c) & (d): Area 2. (e) & (f): Area 3.

  • [1] NOGUEIRA R, FERREIRA PINTO A P, GOMES A. Design and behavior of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses[J]. Cement and Concrete Composites, 2018, 89: 192-204. doi: 10.1016/j.cemconcomp.2018.03.005
    [2] SANTOS T, ALMEIDA J, SILVESTRE J D, et al. Life cycle assessment of mortars: a review on technical potential and drawbacks[J]. Construction and Building Materials, 2021, 288: 123069. doi: 10.1016/j.conbuildmat.2021.123069
    [3] BARBERO-BARRERA M D M, MALDONADO-RAMOS L, VAN BALEN K, et al. Lime render layers: an overview of their properties[J]. Journal of Cultural Heritage, 2014, 15(3-4): 326-330.
    [4] FUKUNAGA K. THz Technology Applied to Cultural Heritage in Practice[M]. Tokyo: Springer, 2016.
    [5] VAZQUEZ D A, PILOZZI L, DELRE E, et al. Terahertz imaging super-resolution for documental heritage diagnostics[J]. IEEE Transactions on Terahertz Science and Technology, 2024, 14(4): 455-465. doi: 10.1109/TTHZ.2024.3410674
    [6] CHENG Y Y, TIAN X, WANG N N, et al. Multipolarization image evaluation for passive terahertz imaging detection[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811012. (in Chinese).
    [7] CUI Y Q, XU Y F, HAN D H, et al. Hidden-information extraction from layered structures through terahertz imaging down to ultralow SNR[J]. Science Advances, 2023, 9(40): eadg8435. doi: 10.1126/sciadv.adg8435
    [8] CHENG L, JI Y C, LI C, et al. Improved SSD network for fast concealed object detection and recognition in passive terahertz security images[J]. Scientific Reports, 2022, 12(1): 12082. doi: 10.1038/s41598-022-16208-0
    [9] KOWALSKI M, PALKA N, PISZCZEK M, et al. Hidden object detection system based on fusion of THz and VIS images[J]. Acta Physica Polonica Series A, 2013, 124(3): 490-493. doi: 10.12693/APhysPolA.124.490
    [10] KOWALSKI M, KASTEK M, WALCZAKOWSKI M, et al. Passive imaging of concealed objects in terahertz and long-wavelength infrared[J]. Applied Optics, 2015, 54(13): 3826-3833. doi: 10.1364/AO.54.003826
    [11] RYU C H, PARK S H, KIM D H, et al. Nondestructive evaluation of hidden multi-delamination in a glass-fiber-reinforced plastic composite using terahertz spectroscopy[J]. Composite Structures, 2016, 156: 338-347. doi: 10.1016/j.compstruct.2015.09.055
    [12] ZHANG T Y, LI B Y, YUAN Y, et al. Precise measurement of refractive index in the ambient environment using continuous-wave terahertz frequency-domain spectroscopy (THz-FDS)[J]. Applied Physics Express, 2023, 16(9): 096502. doi: 10.35848/1882-0786/acf7ab
    [13] XUE K L, CHEN Y X, ZHANG W N, et al. Continuous terahertz wave imaging for debonding detection and visualization analysis in layered structures[J]. IEEE Access, 2023, 11: 31607-31618. doi: 10.1109/ACCESS.2023.3252372
    [14] WU Q Y S, ZHANG N, LIM V, et al. Detection of a glass fiber-reinforced polymer with defects by terahertz computed tomography[J]. ChemPhysMater, 2024, 3(4): 470-480. doi: 10.1016/j.chphma.2024.07.004
    [15] DONG J L, KIM B, LOCQUET A, et al. Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves[J]. Composites Part B: Engineering, 2015, 79: 667-675. doi: 10.1016/j.compositesb.2015.05.028
    [16] LIU H S, ZHANG Z W, ZHANG X, et al. Dimensionality reduction for identification of hepatic tumor samples based on terahertz time-domain spectroscopy[J]. IEEE Transactions on Terahertz Science and Technolog, 2018, 8(3): 271-277. doi: 10.1109/TTHZ.2018.2813085
    [17] GEZIMATI M, SINGH G. Advances in terahertz technology for cancer detection applications[J]. Optical and Quantum Electronics, 2023, 55(2): 151. doi: 10.1007/s11082-022-04340-0
    [18] JO Y H, LEE C H. Ultrasonic properties of a stone architectural heritage and weathering evaluations based on provenance site[J]. Applied Sciences, 2022, 12(3): 1498. doi: 10.3390/app12031498
    [19] MENG T H, TANG J Y, WANG H H, et al. Application of ultrasonic nondestructive detection in disease detection and restoration of the Deshengbao Great Wall[J]. Geotechnical Investigation & Surveying, 2023, 51(11): 74-80. (in Chinese).
    [20] GUIDORZI L, RE A, TANSELLA F, et al. X-CT reconstruction as a tool for monitoring the conservation state and decay processes of works of art and in support of restoration and conservation strategies[J]. Heritage, 2025, 8(2): 52. doi: 10.3390/heritage8020052
    [21] KRÜGENER K, SCHWERDTFEGER M, BUSCH S F, et al. Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology[J]. Scientific Reports, 2015, 5: 14842. doi: 10.1038/srep14842
    [22] KRÜGener K, BUSCH S F, SOLTANI A, et al. Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(4): 495-502. doi: 10.1007/s10762-016-0339-9
    [23] MIZUNO M, FUKUNAGA K, SAITO S, et al. Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy[J]. Journal of the European Optical Society-Rapid Publications, 2009, 4: 09044. doi: 10.2971/jeos.2009.09044
    [24] FABRE M, DURAND R, BASSEL L, et al. 2D and 3D terahertz imaging and X-rays CT for sigillography study[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(4): 483-494. doi: 10.1007/s10762-017-0356-3
    [25] HUANG H CH, LI X Y, ZHENG ZH Y, et al. Holographic characterization of typical silicate minerals by terahertz time-domain spectroscopy[J]. Applied Clay Science, 2025, 267: 107720. doi: 10.1016/j.clay.2025.107720
    [26] BODNAR J L, METAYER J J, MOUHOUBI K, et al. Non destructive testing of works of art by terahertz analysis[J]. The European Physical Journal Applied Physics (EPJ AP), 2013, 64(2): 21001. doi: 10.1051/epjap/2013130132
    [27] MIAO X Y, LIU X C, CHEN M X, et al. Terahertz spectral characteristics of rocks with different lithologies[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1314-1319. (查阅网上资料, 本条文献为英文文献, 请确认).
    [28] ZHANG S Q, ZHANG T, ZHENG ZH Y, et al. Application of terahertz spectroscopy on rock and mineral[J]. Laser & Optoelectronics Progress, 2023, 60(21): 2100006. (in Chinese).
    [29] MEOLA C, DI MAIO R, ROBERTI N, et al. Application of infrared thermography and geophysical methods for defect detection in architectural structures[J]. Engineering Failure Analysis, 2005, 12(6): 875-892. doi: 10.1016/j.engfailanal.2004.12.030
    [30] MARTIN M, CHONG A, BILJECKI F, et al. Infrared thermography in the built environment: a multi-scale review[J]. Renewable and Sustainable Energy Reviews, 2022, 165: 112540. doi: 10.1016/j.rser.2022.112540
    [31] OZ N, SOCHEN N, MENDLOVIC D, et al. Estimating temperatures with low-cost infrared cameras using physically-constrained deep neural networks[J]. Optics Express, 2024, 32(17): 30565-30582. doi: 10.1364/OE.531349
    [32] JANSSENS O, SCHULZ R, SLAVKOVIKJ V, et al. Thermal image based fault diagnosis for rotating machinery[J]. Infrared Physics & Technology, 2015, 73: 78-87.
    [33] HUANG SH Q, WANG F H, PAN T CH, et al. Research on a monitoring model of revolute pair clearance based on dynamic features and thermal imaging fusion[J]. Infrared Physics & Technology, 2023, 135: 104967.
    [34] LEITENSTORFER A, MOSKALENKO A S, KAMPFRATH T, et al. The 2023 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 2023, 56(22): 223001. doi: 10.1088/1361-6463/acbe4c
    [35] KOCH M, MITTLEMAN D M, ORNIK J, et al. Terahertz time-domain spectroscopy[J]. Nature Reviews Methods Primers, 2023, 3(1): 48. doi: 10.1038/s43586-023-00232-z
    [36] SHEN Y C, UPADHYA P C, BEERE H E, et al. Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers[J]. Applied Physics Letters, 2004, 85(2): 164-166. doi: 10.1063/1.1768313
    [37] SHI W, WANG ZH Q, LI CH F, et al. New antenna for detecting polarization states of terahertz[J]. Frontiers in Physics, 2022, 10: 850770. doi: 10.3389/fphy.2022.850770
    [38] MENG T H, HUANG R, LU Y H, et al. Highly sensitive terahertz non-destructive testing technology for stone relics deterioration prediction using SVM-based machine learning models[J]. Heritage Science, 2021, 9(1): 24. doi: 10.1186/s40494-021-00502-7
    [39] DORNEY T D, BARANIUK R G, MITTLEMAN D M. Material parameter estimation with terahertz time-domain spectroscopy[J]. Journal of the Optical Society of America A, 2001, 18(7): 1562-1571. doi: 10.1364/JOSAA.18.001562
    [40] DUVILLARET L, GARET F, COUTAZ J L. Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy[J]. Applied Optics, 1999, 38(2): 409-415. doi: 10.1364/AO.38.000409
    [41] TEENA M, MANICKAVASAGAN A. Thermal infrared imaging[M]//MANICKAVASAGAN A, JAYASURIYA H. Imaging with Electromagnetic Spectrum. Berlin Heidelberg: Springer, 2014: 147-173.
    [42] TALGHADER J J, GAWARIKAR A S, SHEA R P. Spectral selectivity in infrared thermal detection[J]. Light: Science & Applications, 2012, 1(8): e24.
    [43] ZHANG Y C, WANG ZH K, FU X B, et al. An experimental method for improving temperature measurement accuracy of infrared thermal imager[J]. Infrared Physics & Technology, 2019, 102: 103020.
  • 加载中
图(7)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  8
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-03
  • 录用日期:  2025-05-12
  • 网络出版日期:  2025-05-21

目录

    /

    返回文章
    返回