Evaluation of restoration effects for city walls based on terahertz-infrared integrated technology
doi: 10.37188/CO.EN-2025-0016
-
摘要:
为了对古城墙修复性能进行科学评估,本研究以明代得胜堡长城为对象,采用太赫兹时域光谱(THz-TDS)与红外热成像技术对其土坯砖垒砌法修复段(1区)、保存完好段(2区)和逐层夯筑法修复段(3区)进行检测分析。结果显示:1区的THz光谱数据(时延为3.72 ps、折射率2.224)与原始墙体(2区时延3.02 ps、折射率2.107)差异显著,而3区THz光谱数据(时延3.12 ps、折射率2.098)与2区的几乎一致;红外热像图也表明3区的热均匀性更好,裂缝、毛细现象、生物病害的发生率更低,基本达到了“修旧如旧”的目的。因此,将城墙区域的红外热像图与原位取样的THz光谱相结合方法,不仅可以对修复性能进行定量评估,而且可以为传统工艺科学化评价提供新手段。
Abstract:To scientifically evaluate the restoration performance of ancient city walls, Terahertz time-domain spectroscopy (THz-TDS) and infrared thermal imaging technology assessed the Desheng Fortress (Ming Dynasty). Three representative sections were examined: adobe brick masonry repaired (Area 1), well-preserved original (Area 2), and layer-by-layer ramming repaired (Area 3). THz spectral data revealed significant differences between Area 1 (time delay: 3.72 ps; refractive index: 2.224) and Area 2 (time delay: 3.02 ps; refractive index: 2.107), while Area 3 (time delay: 3.12 ps; refractive index: 2.098) demonstrated nearly identical THz spectral data to Area 2. Infrared thermal imaging also showed that the Area 3 restored by layer-by-layer ramming exhibited greater uniformity with fewer instances of cracks, capillary phenomena, or biological diseases. The proposed point-surface integrated evaluation methodology synergistically combines infrared thermography mapping of heritage surfaces with THz spectral datasets acquired through in-situ micro-sampling, enabling quantitative restoration assessment and establishing a novel approach for scientifically validating traditional conservation techniques.
-
-
[1] NOGUEIRA R, FERREIRA PINTO A P, GOMES A. Design and behavior of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses[J]. Cement and Concrete Composites, 2018, 89: 192-204. doi: 10.1016/j.cemconcomp.2018.03.005 [2] SANTOS T, ALMEIDA J, SILVESTRE J D, et al. Life cycle assessment of mortars: a review on technical potential and drawbacks[J]. Construction and Building Materials, 2021, 288: 123069. doi: 10.1016/j.conbuildmat.2021.123069 [3] BARBERO-BARRERA M D M, MALDONADO-RAMOS L, VAN BALEN K, et al. Lime render layers: an overview of their properties[J]. Journal of Cultural Heritage, 2014, 15(3-4): 326-330. [4] FUKUNAGA K. THz Technology Applied to Cultural Heritage in Practice[M]. Tokyo: Springer, 2016. [5] VAZQUEZ D A, PILOZZI L, DELRE E, et al. Terahertz imaging super-resolution for documental heritage diagnostics[J]. IEEE Transactions on Terahertz Science and Technology, 2024, 14(4): 455-465. doi: 10.1109/TTHZ.2024.3410674 [6] CHENG Y Y, TIAN X, WANG N N, et al. Multipolarization image evaluation for passive terahertz imaging detection[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811012. (in Chinese). [7] CUI Y Q, XU Y F, HAN D H, et al. Hidden-information extraction from layered structures through terahertz imaging down to ultralow SNR[J]. Science Advances, 2023, 9(40): eadg8435. doi: 10.1126/sciadv.adg8435 [8] CHENG L, JI Y C, LI C, et al. Improved SSD network for fast concealed object detection and recognition in passive terahertz security images[J]. Scientific Reports, 2022, 12(1): 12082. doi: 10.1038/s41598-022-16208-0 [9] KOWALSKI M, PALKA N, PISZCZEK M, et al. Hidden object detection system based on fusion of THz and VIS images[J]. Acta Physica Polonica Series A, 2013, 124(3): 490-493. doi: 10.12693/APhysPolA.124.490 [10] KOWALSKI M, KASTEK M, WALCZAKOWSKI M, et al. Passive imaging of concealed objects in terahertz and long-wavelength infrared[J]. Applied Optics, 2015, 54(13): 3826-3833. doi: 10.1364/AO.54.003826 [11] RYU C H, PARK S H, KIM D H, et al. Nondestructive evaluation of hidden multi-delamination in a glass-fiber-reinforced plastic composite using terahertz spectroscopy[J]. Composite Structures, 2016, 156: 338-347. doi: 10.1016/j.compstruct.2015.09.055 [12] ZHANG T Y, LI B Y, YUAN Y, et al. Precise measurement of refractive index in the ambient environment using continuous-wave terahertz frequency-domain spectroscopy (THz-FDS)[J]. Applied Physics Express, 2023, 16(9): 096502. doi: 10.35848/1882-0786/acf7ab [13] XUE K L, CHEN Y X, ZHANG W N, et al. Continuous terahertz wave imaging for debonding detection and visualization analysis in layered structures[J]. IEEE Access, 2023, 11: 31607-31618. doi: 10.1109/ACCESS.2023.3252372 [14] WU Q Y S, ZHANG N, LIM V, et al. Detection of a glass fiber-reinforced polymer with defects by terahertz computed tomography[J]. ChemPhysMater, 2024, 3(4): 470-480. doi: 10.1016/j.chphma.2024.07.004 [15] DONG J L, KIM B, LOCQUET A, et al. Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves[J]. Composites Part B: Engineering, 2015, 79: 667-675. doi: 10.1016/j.compositesb.2015.05.028 [16] LIU H S, ZHANG Z W, ZHANG X, et al. Dimensionality reduction for identification of hepatic tumor samples based on terahertz time-domain spectroscopy[J]. IEEE Transactions on Terahertz Science and Technolog, 2018, 8(3): 271-277. doi: 10.1109/TTHZ.2018.2813085 [17] GEZIMATI M, SINGH G. Advances in terahertz technology for cancer detection applications[J]. Optical and Quantum Electronics, 2023, 55(2): 151. doi: 10.1007/s11082-022-04340-0 [18] JO Y H, LEE C H. Ultrasonic properties of a stone architectural heritage and weathering evaluations based on provenance site[J]. Applied Sciences, 2022, 12(3): 1498. doi: 10.3390/app12031498 [19] MENG T H, TANG J Y, WANG H H, et al. Application of ultrasonic nondestructive detection in disease detection and restoration of the Deshengbao Great Wall[J]. Geotechnical Investigation & Surveying, 2023, 51(11): 74-80. (in Chinese). [20] GUIDORZI L, RE A, TANSELLA F, et al. X-CT reconstruction as a tool for monitoring the conservation state and decay processes of works of art and in support of restoration and conservation strategies[J]. Heritage, 2025, 8(2): 52. doi: 10.3390/heritage8020052 [21] KRÜGENER K, SCHWERDTFEGER M, BUSCH S F, et al. Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology[J]. Scientific Reports, 2015, 5: 14842. doi: 10.1038/srep14842 [22] KRÜGener K, BUSCH S F, SOLTANI A, et al. Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(4): 495-502. doi: 10.1007/s10762-016-0339-9 [23] MIZUNO M, FUKUNAGA K, SAITO S, et al. Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy[J]. Journal of the European Optical Society-Rapid Publications, 2009, 4: 09044. doi: 10.2971/jeos.2009.09044 [24] FABRE M, DURAND R, BASSEL L, et al. 2D and 3D terahertz imaging and X-rays CT for sigillography study[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(4): 483-494. doi: 10.1007/s10762-017-0356-3 [25] HUANG H CH, LI X Y, ZHENG ZH Y, et al. Holographic characterization of typical silicate minerals by terahertz time-domain spectroscopy[J]. Applied Clay Science, 2025, 267: 107720. doi: 10.1016/j.clay.2025.107720 [26] BODNAR J L, METAYER J J, MOUHOUBI K, et al. Non destructive testing of works of art by terahertz analysis[J]. The European Physical Journal Applied Physics (EPJ AP), 2013, 64(2): 21001. doi: 10.1051/epjap/2013130132 [27] MIAO X Y, LIU X C, CHEN M X, et al. Terahertz spectral characteristics of rocks with different lithologies[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1314-1319. (查阅网上资料, 本条文献为英文文献, 请确认). [28] ZHANG S Q, ZHANG T, ZHENG ZH Y, et al. Application of terahertz spectroscopy on rock and mineral[J]. Laser & Optoelectronics Progress, 2023, 60(21): 2100006. (in Chinese). [29] MEOLA C, DI MAIO R, ROBERTI N, et al. Application of infrared thermography and geophysical methods for defect detection in architectural structures[J]. Engineering Failure Analysis, 2005, 12(6): 875-892. doi: 10.1016/j.engfailanal.2004.12.030 [30] MARTIN M, CHONG A, BILJECKI F, et al. Infrared thermography in the built environment: a multi-scale review[J]. Renewable and Sustainable Energy Reviews, 2022, 165: 112540. doi: 10.1016/j.rser.2022.112540 [31] OZ N, SOCHEN N, MENDLOVIC D, et al. Estimating temperatures with low-cost infrared cameras using physically-constrained deep neural networks[J]. Optics Express, 2024, 32(17): 30565-30582. doi: 10.1364/OE.531349 [32] JANSSENS O, SCHULZ R, SLAVKOVIKJ V, et al. Thermal image based fault diagnosis for rotating machinery[J]. Infrared Physics & Technology, 2015, 73: 78-87. [33] HUANG SH Q, WANG F H, PAN T CH, et al. Research on a monitoring model of revolute pair clearance based on dynamic features and thermal imaging fusion[J]. Infrared Physics & Technology, 2023, 135: 104967. [34] LEITENSTORFER A, MOSKALENKO A S, KAMPFRATH T, et al. The 2023 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 2023, 56(22): 223001. doi: 10.1088/1361-6463/acbe4c [35] KOCH M, MITTLEMAN D M, ORNIK J, et al. Terahertz time-domain spectroscopy[J]. Nature Reviews Methods Primers, 2023, 3(1): 48. doi: 10.1038/s43586-023-00232-z [36] SHEN Y C, UPADHYA P C, BEERE H E, et al. Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers[J]. Applied Physics Letters, 2004, 85(2): 164-166. doi: 10.1063/1.1768313 [37] SHI W, WANG ZH Q, LI CH F, et al. New antenna for detecting polarization states of terahertz[J]. Frontiers in Physics, 2022, 10: 850770. doi: 10.3389/fphy.2022.850770 [38] MENG T H, HUANG R, LU Y H, et al. Highly sensitive terahertz non-destructive testing technology for stone relics deterioration prediction using SVM-based machine learning models[J]. Heritage Science, 2021, 9(1): 24. doi: 10.1186/s40494-021-00502-7 [39] DORNEY T D, BARANIUK R G, MITTLEMAN D M. Material parameter estimation with terahertz time-domain spectroscopy[J]. Journal of the Optical Society of America A, 2001, 18(7): 1562-1571. doi: 10.1364/JOSAA.18.001562 [40] DUVILLARET L, GARET F, COUTAZ J L. Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy[J]. Applied Optics, 1999, 38(2): 409-415. doi: 10.1364/AO.38.000409 [41] TEENA M, MANICKAVASAGAN A. Thermal infrared imaging[M]//MANICKAVASAGAN A, JAYASURIYA H. Imaging with Electromagnetic Spectrum. Berlin Heidelberg: Springer, 2014: 147-173. [42] TALGHADER J J, GAWARIKAR A S, SHEA R P. Spectral selectivity in infrared thermal detection[J]. Light: Science & Applications, 2012, 1(8): e24. [43] ZHANG Y C, WANG ZH K, FU X B, et al. An experimental method for improving temperature measurement accuracy of infrared thermal imager[J]. Infrared Physics & Technology, 2019, 102: 103020. -