留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation

Wang Hao-xing LIU Jia WANG Hai-yang WANG Jun LI Yuan-hao YIN Jian-xiong WAN Shun DAI Yun-teng JIA Ping-gang

王昊星, 刘佳, 王海洋, 王军, 李元浩, 殷建雄, 万顺, 戴云腾, 贾平岗. 基于温度补偿的金属膜片式光纤法珀压力传感器[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0021
引用本文: 王昊星, 刘佳, 王海洋, 王军, 李元浩, 殷建雄, 万顺, 戴云腾, 贾平岗. 基于温度补偿的金属膜片式光纤法珀压力传感器[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0021
Wang Hao-xing, LIU Jia, WANG Hai-yang, WANG Jun, LI Yuan-hao, YIN Jian-xiong, WAN Shun, DAI Yun-teng, JIA Ping-gang. Metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0021
Citation: Wang Hao-xing, LIU Jia, WANG Hai-yang, WANG Jun, LI Yuan-hao, YIN Jian-xiong, WAN Shun, DAI Yun-teng, JIA Ping-gang. Metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0021

基于温度补偿的金属膜片式光纤法珀压力传感器

详细信息
  • 中图分类号: TP212

Metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation

doi: 10.37188/CO.EN-2025-0021
Funds: Supported by National Natural Science Foundation of China under (No. 51935011); The special fund for Science and Technology Innovation Teams of Shanxi Province (No. 202204051001016).
More Information
    Author Bio:

    WANG Hao-Xing was born in March 2000. He is currently pursuing his master's degree at the North University of China. His research focuses on the fabrication and packaging technology of high-temperature pressure sensors. E-mail: whx18306837517@163.com

    JIA Ping-gang (1982—) is the leader of the High-Temperature Fiber Optic Sensing Technology Innovation Team of Shanxi Province. He has served as the principal investigator for more than ten projects, including the National Natural Science Foundation of China (NSFC) Youth Fund and General Program, sub-projects of national major projects, the Shanxi Provincial Key R & D Program, the Shanxi Natural Science Foundation, and various enterprise-funded projects. As a core member, he has also participated in over ten NSFC key projects. His research focuses on addressing measurement challenges of parameters such as temperature, pressure, vibration, and strain under extreme conditions like ultra-high temperatures, strong radiation, and intense electromagnetic fields. He has carried out extensive work on the batch fabrication of high-temperature-resistant fiber optic sensors based on MEMS technology, femtosecond laser-based fiber Bragg grating fabrication, high-precision dynamic signal demodulation technologies and systems, and the engineering application of high-temperature fiber optic sensors. E-mail: pgjia@nuc.edu.cn

    Corresponding author: pgjia@nuc.edu.cn
  • 摘要:

    本文针对油气井、发动机燃油系统和航空液压系统等高温密闭环境下压力监测的技术难题,提出了一种基于温度补偿的金属膜片式光纤压力传感器。该传感器采用金属敏感膜片与蓝宝石晶片构成温度-压力双法珀(Fabry-Perot, FP)干涉腔结构,并结合互相关信号解调算法与温度解耦方法,有效降低温度串扰对压力测试的影响。实验结果表明,该传感器在常温和300 °C的压力测量中最大非线性误差为0.75% FS和0.99% FS。经过温度解耦后压力测量精度可达1.7% FS。该传感器具有良好的静态压力响应、稳定性和可靠性,为某些高温压力监测场景提供了一种有效的解决方案。

     

  • Figure 1.  Schematic diagram of Sensor structure. (a) Schematic diagram of Sensor sensitive unit(MMF: Multimode Fiber). (b) Multi-beam interference schematic diagram. (c) Deformation diagram of sensitive diaphragm.

    Figure 2.  Diagram of numerical simulation. (a) Relationship between sensitivity and diaphragm size. (b) Relationship between maximum stress and diaphragm size.

    Figure 3.  Finite element simulation diagram. (a) Stress distribution cloud map. (b) Displacement distribution cloud map.

    Figure 4.  Packaged Sensor.

    Figure 5.  The initial reflectance spectrum.

    Figure 6.  System of the static high-pressure experiment.

    Figure 7.  Sensor static pressure test results at room temperature. (a) Repeated tests fit curves. (b) Pressure boost and pressure drop curve at normal temperature.

    Figure 8.  High-temperature experiment. (a) Schematic diagram of sensor demodulation system. (b) Temperature-pressure composite experimental system.

    Figure 9.  Temperature calibration experiment. (a)Temperature curve. (b)Stability test curve.

    Figure 10.  Test result diagram. (a)Pressure response at different temperatures. (b)Temperature measurement curve. (c)Initial cavity length at different temperatures. (d)Sensitivity fitting curve.

    Figure 11.  The pressure value after decoupling and the actual pressure value.

    Table  1.   Structural parameters of the metal-sensitive diaphragm

    Performance Symbol Value
    Diaphragm radius/mm r 4
    Diaphragm thickness/mm h 0.5
    Sensor pressure range/MPa P 0~10
    Sensitivity/um·MPa-1 S 0.322
    Diaphragm yield stress/MPa σ 170
    下载: 导出CSV
  • [1] PULLIAM W J, RUSSLER P M, FIELDER R S. High-temperature high-bandwidth fiber optic MEMS pressure-sensor technology for turbine engine component testing[J]. Proceedings of SPIE, 2002, 4578: 229-238. doi: 10.1117/12.456079
    [2] REN J, WARD M, KINNELL P, et al. Plastic deformation of micromachined silicon diaphragms with a sealed cavity at high temperatures[J]. Sensors, 2016, 16(2): 204. doi: 10.3390/s16020204
    [3] CHEN Y K, XU Q, ZHANG X Q, et al. Materials and sensing mechanisms for high-temperature pressure sensors: a review[J]. IEEE Sensors Journal, 2023, 23(22): 26910-26924. doi: 10.1109/JSEN.2023.3323318
    [4] MARQUES C A F, POSPORI A, SÁEZ-RODRÍGUEZ D, et al. Aviation fuel gauging sensor utilizing multiple diaphragm sensors incorporating polymer optical fiber Bragg gratings[J]. IEEE Sensors Journal, 2016, 16(15): 6122-6129. doi: 10.1109/JSEN.2016.2577782
    [5] HAVRELAND A S, PETERSEN S D, ØSTERGAARD C, et al. Micro-fabricated all optical pressure sensors[J]. Microelectronic Engineering, 2017, 174: 11-15. doi: 10.1016/j.mee.2016.12.010
    [6] JIANG X N, KIM K, ZHANG SH J, et al. High-temperature piezoelectric sensing[J]. Sensors, 2014, 14(1): 144-169.
    [7] MAILLAUD F F M, PECHSTEDT R D. High-accuracy optical pressure sensor for gas turbine monitoring[J]. Proceedings of SPIE, 2012, 8421: 8421AF.
    [8] YAO Z, LIANG T, JIA P G, et al. A high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit[J]. Sensors, 2016, 16(6): 913. doi: 10.3390/s16060913
    [9] WANG ZH F, CHEN J, WEI H M, et al. Sapphire Fabry–Perot interferometer for high-temperature pressure sensing[J]. Applied Optics, 2020, 59(17): 5189-5196. doi: 10.1364/AO.393353
    [10] LIU J, JIA P G, FENG F, et al. MgO single crystals MEMS-based fiber-optic fabry–perot pressure sensor for harsh monitoring[J]. IEEE Sensors Journal, 2021, 21(4): 4272-4279. doi: 10.1109/JSEN.2020.3029152
    [11] CAMPANELLA C E, CUCCOVILLO A, CAMPANELLA C, et al. Fibre bragg grating based strain sensors: review of technology and applications[J]. Sensors, 2018, 18(9): 3115. doi: 10.3390/s18093115
    [12] SAHOTA J K, GUPTA N, DHAWAN D, et al. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review[J]. Optical Engineering, 2020, 59(6): 060901.
    [13] WANG Q, ZHANG L, SUN CH S, et al. Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement[J]. IEEE Sensors Journal, 2008, 8(11): 1879-1883. doi: 10.1109/JSEN.2008.2006253
    [14] ZHAO Q CH, LIU X H, MA L, et al. Optical fiber pressure sensor based on F-P cavity in the oil and gas well[J]. IOP Conference Series: Earth and Environmental Science, 2017, 64: 012007. doi: 10.1088/1755-1315/64/1/012007
    [15] CHENG L, TONG X L, WEI J CH, et al. Highly accurate differential pressure FBG gas flow sensor[J]. Optical Fiber Technology, 2023, 75: 103189. doi: 10.1016/j.yofte.2022.103189
    [16] HU X S, SU D, QIAO X G, et al. Diaphragm-structured fiber-optic pressure sensors for oil downhole applications[J]. IEEE Sensors Journal, 2024, 24(9): 14270-14278. doi: 10.1109/JSEN.2024.3376085
    [17] CHEN H B, CHEN Q Q, WANG W, et al. Fiber-optic, extrinsic Fabry-Perot interferometric dual-cavity sensor interrogated by a dual-segment, low-coherence Fizeau interferometer for simultaneous measurements of pressure and temperature[J]. Optics Express, 2019, 27(26): 38744-38758. doi: 10.1364/OE.382761
    [18] SHAO ZH Q, WU Y L, SUN ZH Q, et al. Excellent repeatability, all-sapphire Fabry-Perot optical Pressure sensor based on wet etching and direct bonding for Harsh Environment Applications[J]. Optics Express, 2021, 29(13): 19831-19838. doi: 10.1364/OE.423753
    [19] SHAO ZH Q, WU Y L, WANG SH, et al. All-sapphire-based fiber-optic pressure sensor for high-temperature applications based on wet etching[J]. Optics Express, 2021, 29(3): 4139-4146. doi: 10.1364/OE.417246
    [20] ZHANG Y T, JIANG Y, YANG SH W, et al. Design of high-temperature vacuum fiber optic absolute pressure sensor for near-space vehicles[J]. Journal of Rocket Propulsion, 2024, 50(3): 118-123. (in Chinese). doi: 10.3969/j.issn.1672-9374.2024.03.013
    [21] ZHANG Y T, JIANG Y, YANG SH W, et al. All-sapphire fiber-optic sensor for the simultaneous measurement of ultra-high temperature and high pressure. Optics Express, 2024, 32(8): 14826-14836.
    [22] LI J S, JIA P G, WANG J, et al. Silica-MEMS-based fiber-optic fabry-perot pressure sensor for high-temperature applications[J]. Acta Photonica Sinica, 2022, 51(6): 0606005. doi: 10.3788/gzxb20225106.0606005
    [23] LIANG Y CH, CHEN H T. Design of diaphragm optical fiber pressure sensor based on F-P interference[J]. Journal of Hunan Post and Telecommunication College, 2021, 20(2): 1-3,35. (in Chinese). doi: 10.3969/j.issn.2095-7661.2021.02.001
    [24] CHEN H B, LIU J, ZHANG X X, et al. High-order harmonic-frequency cross-correlation algorithm for absolute cavity length interrogation of white-light fiber-optic Fabry-Perot sensors[J]. Journal of Lightwave Technology, 2020, 38(4): 953-960. doi: 10.1109/JLT.2019.2948214
    [25] ZHANG J Y, ZHANG X X, GUO Z L, et al. Fundamental and high-order cross-correlation combined demodulation method for absolute cavity length measurement of fiber-optic Fabry-Perot sensors[J]. Optical Engineering, 2022, 61(9): 096102.
    [26] KANG J W, CHEN H B, ZHANG X X, et al. Valley-positioning-assisted discrete cross-correlation algorithm for fast cavity length interrogation of fiber-optic Fabry-Perot sensors[J]. Measurement, 2022, 198: 11411.
    [27] WANG ZH F, CHEN J, WEI H M, et al. Sapphire Fabry-Perot interferometer for high-temperature pressure sensing[J]. Applied Optics, 2020, 59(17): 5189-5196. (查阅网上资料, 本条文献与第9条文献重复, 请确认).
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  24
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-05-19

目录

    /

    返回文章
    返回