留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calibration of single optical wedge compensation test system error by computer generation hologram

CAI Zhi-hua WANG Xiao-kun HU Hai-xiang CHENG Qiang WANG Ruo-qiu ZHANG Hai-dong

蔡志华, 王孝坤, 胡海翔, 程强, 王若秋, 张海东. 计算全息法标定单光楔补偿检测系统误差[J]. 中国光学(中英文), 2022, 15(1): 90-100. doi: 10.37188/CO.EN.2021-0004
引用本文: 蔡志华, 王孝坤, 胡海翔, 程强, 王若秋, 张海东. 计算全息法标定单光楔补偿检测系统误差[J]. 中国光学(中英文), 2022, 15(1): 90-100. doi: 10.37188/CO.EN.2021-0004
CAI Zhi-hua, WANG Xiao-kun, HU Hai-xiang, CHENG Qiang, WANG Ruo-qiu, ZHANG Hai-dong. Calibration of single optical wedge compensation test system error by computer generation hologram[J]. Chinese Optics, 2022, 15(1): 90-100. doi: 10.37188/CO.EN.2021-0004
Citation: CAI Zhi-hua, WANG Xiao-kun, HU Hai-xiang, CHENG Qiang, WANG Ruo-qiu, ZHANG Hai-dong. Calibration of single optical wedge compensation test system error by computer generation hologram[J]. Chinese Optics, 2022, 15(1): 90-100. doi: 10.37188/CO.EN.2021-0004

计算全息法标定单光楔补偿检测系统误差

详细信息
  • 中图分类号: O436.1

Calibration of single optical wedge compensation test system error by computer generation hologram

doi: 10.37188/CO.EN.2021-0004
Funds: Supported by Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDJ-SSW-JSC038);Jilin Province Science and Technology Development Plan Project Mission Statement (No.20200401065GX); Youth Innovation Promotion Association, Chinese Academy of Sciences (No.2019221);National Natural Science Foundation of China (No.61805243, No.61975201, No.12003034, No.12003035, No. 62127901)
More Information
    Author Bio:

    Cai Zhi-hua (1991—), male, from Dezhou, Shandong, PhD candidate, obtained a bachelor degree from Shandong Normal University in 2014, mainly engaged in optical design and testing technology research. E-mail: pe_dzcaizhihua@126.com

    Wang Xiao-kun (1980—), male, from Danyang, Jiangsu, professor, doctoral supervisor, obtained a bachelor degree from Jiangsu Normal University in 2003, and a doctorate degree from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 2008, mainly engaged in optical manufacturing and testing technology. E-mail: jimwxk@sohu.com

    Hu Haixiang (1990—), associated researcher, obtained a bachelor degree from University of Science and Technology of China in 2012, and a doctorate degree from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 2017, mainly interested in optical fabrication and testing. E-mail: hhx@ciomp.ac.cn

    Corresponding author: jimwxk@sohu.comhhx@ciomp.ac.cn
  • 摘要: 单光楔补偿检测法具有良好的适用性、鲁棒性和灵活性,但是在检测光路中存在多种误差耦合,误差解耦困难,影响了单光楔补偿检测的精度和可信度。针对这一问题,本文提出一种计算全息法(Computer Generation Hologram, CGH)标定单光楔补偿检测光路系统误差的新方法。文中首先分析了单光楔补偿检测法系统误差的来源,并对CGH标定光楔补偿器的可行性进行了分析。结合工程实例,对口径为150 mm的单光楔补偿器设计了CGH,经分析可得CGH的标定精度为1.98 nm RMS,CGH标定后单光楔补偿检测精度为3.43 nm RMS,该精度能够满足大口径凸非球面反射镜的高精度检测要求。结果表明:CGH可以准确标定单光楔补偿器的位姿和检测光路的系统误差,解决了检测光路中误差解耦困难的问题,提高了单光楔补偿检测的准确性和可靠性。使用CGH标定得到Tap#2和Tap#3的检测光路系统误差分别为0.023λRMS和0.011λRMS。

     

  • Figure 1.  (a) Single optical wedge test optical path. (b) Schematic of the test wavefront. w1, w2, w3, w4 are theoretical incident wavefront, actual incident wavefront, theoretical aspheric surface and actual aspheric surface, respectively.

    Figure 2.  (a) Surface shape of the optical wedge A. (b) Surface shape of optical wedge B. (c) Transmitted wave aberration. (d) Transmission sphere system error. (e) Tap#1 non-null error. (f) Tap#2 non-null error. (g) Tap#3 non-null error.

    Figure 3.  Calibration of the single optical wedge test path

    Figure 4.  Structure of the CGH

    Figure 5.  Main area of the CGH. (a) Design residual; (b) diffraction order energy level distribution; (c) diffraction pattern; (d) surface phase setting parameters

    Figure 6.  Schematic of the single optical wedge deflection light path

    Figure 7.  Alignment area. (a) Design residual; (b) diffraction order energy level distribution; (c) diffraction pattern

    Figure 8.  Substrate error

    Figure 9.  Convex spherical stitching test result (D = 197 mm) (a) Actual full-aperture surface; (b) sub-plane; (c) stitching test result; (d) the residual difference between the stitching test result and the full-aperture surface result

    Figure 10.  (a) Calibration optical path diagram of optical wedge compensator. (b) CGH and interferometer aligned on the optical path. (c) Insertion of the optical wedge compensator

    Figure 11.  Calibration results for the test path system error. (a) CGH alignment result by Tap#2. (b) Test path system error by Tap#2. (c) CGH alignment result by Tap#3. (d) Test path system error by Tap#3

    Table  1.   Basic parameters

    ItemTap#1Tap#2Tap#3
    Sub-aperture
    planning
    Number1/218/2112/21
    Off-axis/mm0145175
    Subaperture/mm118114116
    Departure/μm0.7419.228.5
    Need compensation×
    Optical wedge
    structure
    parameters
    Diameter /mm150150
    Centre thickness /mm2020
    Tilt/(°)3.20.77
    Wedge/(°)6.36.3
    MaterialF_SilicaF_Silica
    下载: 导出CSV

    Table  2.   Adjustment tolerance analysis of the optical wedge compensator

    Wedge-interferometer dist./mmWedge-mirror. dist./mmx-tilt
    /(°)
    y-tilt
    /(°)
    Eccentric eccentricity/mmRMS
    Test
    system
    0.150.150.0050.0139.21×10−3λ
    Calibration
    system
    0.050.050.00150.0010.058.35×10−3λ
    下载: 导出CSV

    Table  3.   CGH fringe contrast

    Diffraction orderAmplitude CGHPhase CGH
    073.05%
    ±193.09%61.08%
    ±378.92%99.97%
    ±554.01%87.29%
    下载: 导出CSV

    Table  4.   CGH error

    Error typeValue
    design residual1.77×10−5λ
    coding error9.00×10−4λ
    substrate error3.00×10−3λ
    characterization distortion1.57×10−4λ
    RMS3.10×10−3λ
    下载: 导出CSV

    Table  5.   Single optical wedge compensation test accuracy after CGH calibration (nm)

    ErrorValue
    Measuring random error2.5
    CGH calibration test optical path system error1.98
    Accuracy of stitching algorithm1.26
    RMS3.43
    下载: 导出CSV
  • [1] LI F ZH, ZHENG L G, YAN F, et al. Optical testing method and its experiment on freeform surface with computer-generated hologram[J]. Infrared and Laser Engineering, 2012, 41(4): 1052-1056. (in Chinese) doi: 10.3969/j.issn.1007-2276.2012.04.040
    [2] REN J F, GUO P J. Design of original structure of illuminating system in off-axis convex aspherical lens testing system with computer-generated hologram[J]. Acta Optica Sinica, 2012, 32(2): 0222005. (in Chinese) doi: 10.3788/AOS201232.0222005
    [3] WANG X K, WANG L H, DENG W J, et al. Measurement of large aspheric mirrors by non-null testing[J]. Optics and Precision Engineering, 2011, 19(3): 520-528. (in Chinese) doi: 10.3788/OPE.20111903.0520
    [4] ZHANG L, TIAN CH, LIU D, et al. Non-null annular subaperture stitching interferometry for steep aspheric measurement[J]. Applied Optics, 2014, 53(25): 5755-5762. doi: 10.1364/AO.53.005755
    [5] ZHANG L, LI D, LIU Y, et al. Validation of simultaneous reverse optimization reconstruction algorithm in a practical circular subaperture stitching interferometer[J]. Optics Communications, 2017, 403: 41-49. doi: 10.1016/j.optcom.2017.07.004
    [6] SUPRANOWITZ C, MCFEE C, MURPHY P. Asphere metrology using variable optical null technology[J]. Proceedings of SPIE, 2012, 8416: 841604. doi: 10.1117/12.2009289
    [7] CAI ZH H, WANG X K, HU H X, et al. Testing large convex aspheres using a single wedge compensation and stitching method[J]. Optics Communications, 2021, 480: 126484. doi: 10.1016/j.optcom.2020.126484
    [8] TRICARD M, KULAWIEC A, BAUER M, et al. Subaperture stitching interferometry of high-departure aspheres by incorporating a variable optical null[J]. CIRP Annals, 2010, 59(1): 547-550. doi: 10.1016/j.cirp.2010.03.125
    [9] HE Y W, HOU X, WU F, et al. Analysis of spurious diffraction orders of computer-generated hologram in symmetric aspheric metrology[J]. Optics Express, 2017, 25(17): 20556-20572. doi: 10.1364/OE.25.020556
    [10] ZHANG H D, WANG X K, XUE D L, et al. Modified surface testing method for large convex aspheric surfaces based on diffraction optics[J]. Applied Optics, 2017, 56(34): 9398-9405. doi: 10.1364/AO.56.009398
    [11] BURGE J H, KOT L B, MARTIN H M, et al. Design and analysis for interferometric measurements of the GMT primary mirror segments[J]. Proceedings of SPIE, 2006, 6273: 62730M. doi: 10.1117/12.672484
    [12] ZHOU P, BURGE J H. Fabrication error analysis and experimental demonstration for computer-generated holograms[J]. Applied Optics, 2007, 46(5): 657-663. doi: 10.1364/AO.46.000657
    [13] ZHAO CH Y, BURGE J H. Optical testing with computer generated holograms: comprehensive error analysis[J]. Proceedings of SPIE, 2013, 8838: 88380H.
    [14] BURGE J H. Null test for null correctors: error analysis[J]. Proceedings of SPIE, 1993, 1993: 86-97. doi: 10.1117/12.164976
    [15] ZHANG H D, WANG X K, XUE D L, et al. Surface testing method for ultra-large convex aspheric surfaces[J]. Chinese Optics, 2019, 12(5): 1147-1154. (in Chinese) doi: 10.3788/co.20191205.1147
    [16] LI M, LUO X, XUE D L, et al. Design of CGH for testing large off-axis asphere by considering mapping distortion[J]. Optics and Precision Engineering, 2015, 23(5): 1246-1253. (in Chinese) doi: 10.3788/OPE.20152305.1246
    [17] ZHU D Y, LI M, XUE D L, et al. Absolute testing of null lens errors with tilted computer-generated-hologram[J]. Acta Optica Sinica, 2015, 35(4): 0412001. (in Chinese) doi: 10.3788/AOS201535.0412001
    [18] CHEN Q, WU F, YUAN J H, et al. Certification of compensator by computer-generated hologram[J]. Acta Optica Sinica, 2007, 27(12): 2175-2178. (in Chinese) doi: 10.3321/j.issn:0253-2239.2007.12.013
    [19] LI M, ZHANG X J. Test of large off-axis aspheric surface with CGH[C]. CIOMP-OSA Summer Session on Optical Engineering, Design and Manufacturing, Optical Society of America. 2013.
    [20] BURGE J H, ZHAO CH Y, DUBIN M. Measurement of aspheric mirror segments using Fizeau interferometry with CGH correction[J]. Proceedings of SPIE, 2010, 7739: 773902. doi: 10.1117/12.857816
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  1193
  • HTML全文浏览量:  650
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 修回日期:  2021-03-18
  • 网络出版日期:  2021-06-18
  • 刊出日期:  2022-01-19

目录

    /

    返回文章
    返回