留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-sensitivity surface plasmon resonance sensor based on the ten-fold eccentric core quasi-D-shaped photonic quasi-crystal fiber coated with indium tin oxide

LIU Qiang JIANG Yu HU Chun-jie LU Wen-shu SUN Yu-dan LIU Chao LV Jing-wei ZHAO Jin TAI Sheng-nan YI Zao CHU Paul K

刘强, 蒋宇, 胡春杰, 卢文姝, 孙宇丹, 刘超, 吕靖薇, 赵锦, 邰胜男, 易早, PaulK Chu. 基于氧化铟锡的十重偏芯D型光子准晶光纤的高灵敏度表面等离子体共振传感器[J]. 中国光学(中英文), 2022, 15(1): 101-110. doi: 10.37188/CO.EN.2021-0006
引用本文: 刘强, 蒋宇, 胡春杰, 卢文姝, 孙宇丹, 刘超, 吕靖薇, 赵锦, 邰胜男, 易早, PaulK Chu. 基于氧化铟锡的十重偏芯D型光子准晶光纤的高灵敏度表面等离子体共振传感器[J]. 中国光学(中英文), 2022, 15(1): 101-110. doi: 10.37188/CO.EN.2021-0006
LIU Qiang, JIANG Yu, HU Chun-jie, LU Wen-shu, SUN Yu-dan, LIU Chao, LV Jing-wei, ZHAO Jin, TAI Sheng-nan, YI Zao, CHU Paul K. High-sensitivity surface plasmon resonance sensor based on the ten-fold eccentric core quasi-D-shaped photonic quasi-crystal fiber coated with indium tin oxide[J]. Chinese Optics, 2022, 15(1): 101-110. doi: 10.37188/CO.EN.2021-0006
Citation: LIU Qiang, JIANG Yu, HU Chun-jie, LU Wen-shu, SUN Yu-dan, LIU Chao, LV Jing-wei, ZHAO Jin, TAI Sheng-nan, YI Zao, CHU Paul K. High-sensitivity surface plasmon resonance sensor based on the ten-fold eccentric core quasi-D-shaped photonic quasi-crystal fiber coated with indium tin oxide[J]. Chinese Optics, 2022, 15(1): 101-110. doi: 10.37188/CO.EN.2021-0006

基于氧化铟锡的十重偏芯D型光子准晶光纤的高灵敏度表面等离子体共振传感器

详细信息
  • 中图分类号: O433

High-sensitivity surface plasmon resonance sensor based on the ten-fold eccentric core quasi-D-shaped photonic quasi-crystal fiber coated with indium tin oxide

doi: 10.37188/CO.EN.2021-0006
Funds: Supported by Heilongjiang Provincial talent project (No. ts26180221); Youth Science Foundation of Northeast Petroleum University (No. 2019QNL-17); Natural Science Foundation of Heilongjiang Province (No. E2017010); the City University of Hong Kong Strategic Research Grant (SRG) (No. 7005105, No. 7005265); Scientific Research Fund of Sichuan Province Science and Technology Department (No. 2020YJ0137); Local Universities Reformation and Development Personnel Training Supporting Project from Central Authorities (No. 140119001)
More Information
    Author Bio:

    Liu Qiang (1980—), Male, born in Tailai, Heilongjiang, Ph.D, Professor, graduated from Harbin Engineering University in 2012, and is mainly engaged in optical fiber sensing technology. E-mail: nepulq@126.com

    Liu Chao (1978—), Male, born in Mulan, Heilongjiang, Ph.D, Professor, doctoral supervisor, graduated from Harbin Institute of Technology in 2008, and is mainly engaged in micro-structured optical devices. E-mail: msm-liu@126.com

    Corresponding author: msm-liu@126.com
  • 摘要: 设计并分析了一种高灵敏度表面等离子体共振(SPR)传感器,该传感器由偏芯D型结构的十重光子准晶光纤(PQF)组成,并局部涂覆氧化铟锡(ITO)。偏芯D型结构可以使液体分析更加方便,增强了纤芯模与SPP模之间的耦合,提高了传感灵敏度。采用有限元法对传感器的特性进行研究。结果表明,传感器的波长灵敏度随折射率(RIs)的增大而增大,最大波长灵敏度和分辨率分别为60000 nm/RIU和1.67×10−6 RIU。该传感器性能优良,在液体折射率测量方面具有很大的应用潜力。

     

  • Figure 1.  Schematic diagram of PQF-SPR sensor

    Figure 2.  Loss spectra of the core modes and dispersion relation between the Y-polarized core mode and SPP mode for a liquid analyte RI of 1.39

    Figure 3.  Mode field diagrams for the analyte RI of 1.39. (a) Y-polarized core mode and (b) Y-polarized SPP mode

    Figure 4.  (a) Loss spectra as the analyte RIs vary from 1.35 to 1.4; (b) the resonance wavelength and the wavelength sensitivity versus the refractive index of the analyte; (c) amplitude sensitivity curves of the sensor for analyte RIs between 1.35 and 1.395

    Figure 5.  (a) Loss spectra of the samples with different ITO thicknesses and (b) wavelength sensitivity varying with ITO thickness

    Figure 6.  (a) Loss spectra for different ITO lengths for refractive indexes of 1.395 and 1.4; (b) resonance wavelength varying with ITO length

    Figure 7.  (a), (b) Loss spectra for different air hole spacing and analyte refractive indices of 1.395 and 1.4; (c) peak loss and resonant wavelength for different Λ when na=1.395 and na=1.4

    Figure 8.  (a) Loss spectra for different air hole diameters d1 as na = 1.4; (b) loss spectra for d1 = 2.4 μm and 2.6 μm; (c)the effect of d2 on the loss spectra for na=1.395 and 1.4

    Table  1.   Sensing performance of the sensor for different analyte RIs

    Analyte RIPeak wavelength
    (nm)
    Res. peak shift
    (nm)
    Wavelength sensitivity
    (nm/RIU)
    Amp. sens.
    (RIU−1)
    Wavelength
    resolution (RIU)
    Amplitude
    resolution (RIU)
    1.351760306000102.4241.67×10−59.76×10−5
    1.3551790306000110.8341.37×10−59.02×10−5
    1.361820408000127.3851.25×10−57.85×10−5
    1.36518605010000143.6031.00×10−56.96×10−5
    1.3719105010000168.5441.00×10−55.93×10−5
    1.37519606012000200.1918.33×10−65.41×10−5
    1.3820208016000248.5016.25×10−64.02×10−5
    1.385210010020000329.5735.00×10−63.03×10−5
    1.39220015030000516.3433.33×10−61.93×10−5
    1.395235030060000594.2411.67×10−61.68×10−5
    1.42650N/AN/AN/AN/AN/A
    下载: 导出CSV

    Table  2.   Comparison of the performance of the sensor in this paper and those proposed in the recent literatures

    Refs.StructureRI RangeOperation wave. range (nm)Wave. res. (RIU)Max. wave. sens. (nm/RIU)
    [19]D-shaped ITO-coated PQF1.26~1.381380~22602.86×10−6 RIU35000 nm/RIU
    [21]D-shaped ITO-coated PCF1.22~1.331200~22506.67×10−6 RIU15000 nm/RIU
    [39]Double groove with Ag and Au1.22~1.361470~21548.68×10−6 RIU12400 nm/RIU
    [34]Eccentric core ITO-coated PQF1.33~1.391480~20084.739×10−6 RIU21000 nm/RIU
    [42]Dual core ITO, graphene-coated1.37~1.401570~198015000 nm/RIU
    [41]Arc groove PCF-SPR1.22~1.371650~27301.96×10−6 RIU51000 nm/RIU
    [40]Graphene D-shaped PCF-SPR1.33~1.381880~21409.35×10−6 RIU10694 nm/RIU
    This workD-shaped eccentric core PQF1.35~1.401760~26501.67×10−6 RIU60000 nm/RIU
    下载: 导出CSV
  • [1] BROLO A G. Plasmonics for future biosensors[J]. Nature Photonics, 2012, 6(11): 709-713. doi: 10.1038/nphoton.2012.266
    [2] WANG Z M, SU K, FENG B, et al. Coupling length variation and multi-wavelength demultiplexing in photonic crystal waveguides[J]. Chinese Optics Letters, 2018, 16(1): 011301. doi: 10.3788/COL201816.011301
    [3] LIANG H, ZHAN Y F, YIN H L. New observation strategy for X-ray pulsar navigation using a single detector[J]. IET Radar,Sonar &Navigation, 2016, 10(6): 1107-1111.
    [4] YU J L, XIANG K, WANG X Y, et al. Video stabilisation based on modelling of motion imaging[J]. IET Image Processing, 2016, 10(3): 177-188. doi: 10.1049/iet-ipr.2015.0321
    [5] YANG H, OU K, CAO G T, et al. Polarization beam splitter with disparate functionality in transmission and reflection modes[J]. Optics Communications, 2019, 443: 104-109. doi: 10.1016/j.optcom.2019.03.022
    [6] XIE Y, CHEN ZH X, YAN J, et al. Combination of surface Plasmon polaritons and subwavelength grating for polarization beam splitting[J]. Plasmonics, 2020, 15(1): 235-241. doi: 10.1007/s11468-019-01032-6
    [7] YANG ZH, CHEN K, WANG CH G, et al. A photonic crystal beam splitter used for light path multiplexing: synergy of TIR and PBG light guiding[J]. Optical and Quantum Electronics, 2020, 52(2): 84. doi: 10.1007/s11082-020-2224-y
    [8] LIU Y CH, CHEN H L, LI SH G, et al. Surface plasmon resonance-induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers[J]. Chinese Physics B, 2017, 26(10): 104211. doi: 10.1088/1674-1056/26/10/104211
    [9] ZHAO H X, XIE J L, LIU J J. An approximate theoretical explanation for super-resolution imaging of two-dimensional photonic quasi-crystal flat lens[J]. Applied Physics Express, 2020, 13(2): 022007. doi: 10.35848/1882-0786/ab6934
    [10] VAN TOAN N, ZHAO D, INOMATA N, et al. Logic gates based on electrically driven nanoelectromechanical switches[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14(2): 335-336. doi: 10.1002/tee.22814
    [11] YIN SH, HU F R, CHEN X Y, et al. Ruler equation for precisely tailoring the resonance frequency of terahertz U-shaped metamaterials[J]. Journal of Optics, 2019, 21(2): 025101. doi: 10.1088/2040-8986/aafd86
    [12] SHUAI B B, XIA L, ZHANG Y T, et al. A multi-core holey fiber based plasmonic sensor with large detection range and high linearity[J]. Optics Express, 2012, 20(6): 5974-5986. doi: 10.1364/OE.20.005974
    [13] RIFAT A A, AHMED R, YETISEN A K, et al. Photonic crystal fiber based plasmonic sensors[J]. Sensors and Actuators B:Chemical, 2017, 243: 311-325. doi: 10.1016/j.snb.2016.11.113
    [14] DE M, SINGH V K. Analysis of a highly sensitive flat fiber plasmonic refractive index sensor[J]. Applied Optics, 2020, 59(2): 380-388. doi: 10.1364/AO.59.000380
    [15] RIFAT A A, MAHDIRAJI G A, SUA Y M, et al. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor[J]. Optics Express, 2016, 24(3): 2485-2495. doi: 10.1364/OE.24.002485
    [16] YAN B, WANG A R, LIU E X, et al. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber[J]. Journal of Physics D:Applied Physics, 2018, 51(15): 155105. doi: 10.1088/1361-6463/aab4ce
    [17] YANG X CH, LU Y, LIU B L, et al. Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance[J]. Plasmonics, 2017, 12(2): 489-496. doi: 10.1007/s11468-016-0289-z
    [18] LIU CH, WANG L Y, YANG L, et al. The single-polarization filter composed of gold-coated photonic crystal fiber[J]. Physics Letters A, 2019, 383(25): 3200-3206. doi: 10.1016/j.physleta.2019.07.012
    [19] LIU Q, SUN J D, SUN Y D, et al. Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film[J]. Optical Materials, 2020, 102: 109800. doi: 10.1016/j.optmat.2020.109800
    [20] KIM S, KEE C S, LEE J. Novel optical properties of six-fold symmetric photonic quasicrystal fibers[J]. Optics Express, 2007, 15(20): 13221-13226. doi: 10.1364/OE.15.013221
    [21] LIU CH, WANG J W, WANG F M, et al. Surface Plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings[J]. Optics Communications, 2020, 464: 125496. doi: 10.1016/j.optcom.2020.125496
    [22] WANG G Y, LI SH G, AN G W, et al. Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance[J]. Optical and Quantum Electronics, 2016, 48(1): 46. doi: 10.1007/s11082-015-0346-4
    [23] TONG K, WANG F CH, WANG M T. D-shaped photonic crystal fiber biosensor based on silver-graphene[J]. Optik, 2018, 168: 467-474. doi: 10.1016/j.ijleo.2018.04.119
    [24] MONFARED Y E. Refractive index sensor based on surface plasmon resonance excitation in a d-shaped photonic crystal fiber coated by titanium Nitride[J]. Plasmonics, 2020, 15(2): 535-542. doi: 10.1007/s11468-019-01072-y
    [25] GANGWAR R K, SINGH V K. Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor[J]. Plasmonics, 2017, 12(5): 1367-1372. doi: 10.1007/s11468-016-0395-y
    [26] MOMTAJ M, MOU J R, KAMRUNNAHAR Q M, et al. Open-channel-based dual-core D-shaped photonic crystal fiber plasmonic biosensor[J]. Applied Optics, 2020, 59(28): 8856-8865. doi: 10.1364/AO.400765
    [27] GANGWAR R K, AMORIM V A, MARQUES P V S. High performance titanium oxide coated d-shaped optical fiber plasmonic sensor[J]. IEEE Sensors Journal, 2019, 19(20): 9244-9248. doi: 10.1109/JSEN.2019.2927728
    [28] KAUR V, SINGH S. Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications[J]. Optical Fiber Technology, 2019, 48: 159-164. doi: 10.1016/j.yofte.2018.12.015
    [29] BING P B, WU G F, SUI J L, et al. Double samples synchronous detection sensor based on up-core photonic crystal fiber[J]. Optik, 2020, 224: 165522. doi: 10.1016/j.ijleo.2020.165522
    [30] RIFAT A A, AHMED R, MAHDIRAJI G A, et al. Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR[J]. IEEE Sensors Journal, 2017, 17(9): 2776-2783. doi: 10.1109/JSEN.2017.2677473
    [31] LU J J, LI Y, HAN Y H, et al. D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating[J]. Applied Optics, 2018, 57(19): 5268-5272. doi: 10.1364/AO.57.005268
    [32] HUANG T Y. Highly sensitive SPR sensor based on d-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength[J]. Plasmonics, 2017, 12(3): 583-588. doi: 10.1007/s11468-016-0301-7
    [33] WU J J, LI SH G, SHI M, et al. Photonic crystal fiber temperature sensor with high sensitivity based on surface plasmon resonance[J]. Optical Fiber Technology, 2018, 43: 90-94. doi: 10.1016/j.yofte.2018.04.006
    [34] LIU Q, SUN J D, SUN Y D, et al. Surface plasmon resonance sensor based on eccentric core photonic quasi-crystal fiber with indium tin oxide[J]. Applied Optics, 2019, 58(25): 6848-6853. doi: 10.1364/AO.58.006848
    [35] LIU Q, SUN J D, SUN Y D, et al. High-sensitivity SPR sensor based on the eightfold eccentric core PQF with locally coated indium tin oxide[J]. Applied Optics, 2020, 59(22): 6484-6489. doi: 10.1364/AO.395605
    [36] MARUYAMA T, FUKUI K. Indium tin oxide thin films prepared by chemical vapour deposition[J]. Thin Solid Films, 1991, 203(2): 297-302. doi: 10.1016/0040-6090(91)90137-M
    [37] WANG J W, LIU CH, WANG F M, et al. Surface plasmon resonance sensor based on coupling effects of dual photonic crystal fibers for low refractive indexes detection[J]. Results in Physics, 2020, 18: 103240. doi: 10.1016/j.rinp.2020.103240
    [38] LI D M, ZHANG W, LIU H, et al. High sensitivity refractive index sensor based on multicoating photonic crystal fiber with surface plasmon resonance at near-infrared wavelength[J]. IEEE Photonics Journal, 2017, 9(2): 6801608.
    [39] LIU CH, WANG J W, JIN X, et al. Near-infrared surface plasmon resonance sensor based on photonic crystal fiber with big open rings[J]. Optik, 2020, 207: 164466. doi: 10.1016/j.ijleo.2020.164466
    [40] AN G W, LI SH G, WANG H Y, et al. Metal oxide-graphene-based quasi-D-shaped optical fiber plasmonic biosensor[J]. IEEE Photonics Journal, 2017, 9(4): 6803909.
    [41] HAQUE E, HOSSAIN M A, NAMIHIRA Y, et al. Microchannel-based plasmonic refractive index sensor for low refractive index detection[J]. Applied Optics, 2019, 58(6): 1547-1554. doi: 10.1364/AO.58.001547
    [42] KAUR V, SINGH S. Design of photonic crystal fiber surface plasmon resonance sensor with external channel approach[C]. Proceedings of the Future Technologies Conference (FTC), Springer, 2019: 841-846.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  932
  • HTML全文浏览量:  751
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 修回日期:  2021-07-20
  • 网络出版日期:  2021-09-10
  • 刊出日期:  2022-01-19

目录

    /

    返回文章
    返回