留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of the relationship between the mode shapes of a landmine’s upper casing and its laser speckle interference signal

ZHANG Xiao-qing WANG Chi LI Jin-hui LUO Xin-yu YU Ying-jie

张小青, 王驰, 李金辉, 罗欣宇, 于瀛洁. 雷体罩模态振型与激光散斑干涉信号的关系解析[J]. 中国光学(中英文), 2022, 15(4): 812-824. doi: 10.37188/CO.EN.2022-0001
引用本文: 张小青, 王驰, 李金辉, 罗欣宇, 于瀛洁. 雷体罩模态振型与激光散斑干涉信号的关系解析[J]. 中国光学(中英文), 2022, 15(4): 812-824. doi: 10.37188/CO.EN.2022-0001
ZHANG Xiao-qing, WANG Chi, LI Jin-hui, LUO Xin-yu, YU Ying-jie. Analysis of the relationship between the mode shapes of a landmine’s upper casing and its laser speckle interference signal[J]. Chinese Optics, 2022, 15(4): 812-824. doi: 10.37188/CO.EN.2022-0001
Citation: ZHANG Xiao-qing, WANG Chi, LI Jin-hui, LUO Xin-yu, YU Ying-jie. Analysis of the relationship between the mode shapes of a landmine’s upper casing and its laser speckle interference signal[J]. Chinese Optics, 2022, 15(4): 812-824. doi: 10.37188/CO.EN.2022-0001

雷体罩模态振型与激光散斑干涉信号的关系解析

详细信息
  • 中图分类号: TN247; TN249

Analysis of the relationship between the mode shapes of a landmine’s upper casing and its laser speckle interference signal

doi: 10.37188/CO.EN.2022-0001
Funds: Supported by the National Natural Science Foundation of China (No. 62175144, No. 61773249); the Science and Technology on Near-Surface Detection Laboratory (No. TCGZ2020C003); Shanghai Science and Technology Innovation Action Plan (No. 20142200100)
More Information
    Author Bio:

    Xiao-qing ZHANG (1984—), female, M.S. She was born in Shangyu, Zhejiang in 1984 and received a M.S. degree in Communication and Information Systems from Nanchang Hangkong University in 2007. She is currently pursuing a PhD degree in the School of Mechatronic Engineering and Automation, Shanghai University. In the meantime, she works in Tongji Zhejiang College in the Jiaxing city of Zhejiang. Her research area is optical detection technology, signal and information processing. E-mail: zxq2018@shu.edu.cn

    Chi WANG (1982—), male, Ph.D. He was born in Taikang, Henan in 1982, and received his Ph.D. degree in measurement technology and instruments from Tianjin University in 2009. Currently, he is a professor in the School of Mechatronic Engineering and Automation, Shanghai University. His main research interests include optical detection technology. E-mail: wangchi@shu.edu.cn

    Corresponding author: wangchi@shu.edu.cn
  • 摘要:

    本文研究了塑壳雷体罩的振型与激光散斑干涉信号之间的映射关系。根据薄圆板的振动方程,建立了地雷上壳体的振型函数。基于激光剪切散斑干涉原理和CCD相机的时间平均法,将振型的离面位移映射到干涉激光的相位。建立的映射关系表明地雷的不同振型对应于独特的贝塞尔条纹。此外,还模拟分析了两种模式的贝塞尔条纹,并进行了实验验证,数值计算和实验结果均验证了理论结论。本文研究为实现声光探雷的快速扫描技术提供了理论依据。

     

  • Figure 1.  Analytical object and model of landmine’s multi-modal vibration characteristics. (a) Anti-tank plastic landmine; (b) equivalent cylindrical thin circular plate

    Figure 2.  Contour diagrams of landmine mode shapes. (a) (0,1) mode; (b) (0,2) mode; (c) (1,1) mode

    Figure 3.  Vibration deformation schematic diagram of the soil surface with and without landmine under the excitation of sound waves

    Figure 4.  The optical path of laser speckle interferometry measurement on the mode shapes of the landmine’s upper casing

    Figure 5.  Vibration diagram under (0,1) mode. (a) Three-dimensional vibration mode diagram; (b) contour map

    Figure 6.  Vibration diagram under (0,2) mode. (a) Three-dimensional vibration mode diagram; (b) contour map

    Figure 7.  Vibration displacement gradient change under the (0,1) mode. (a) Three-dimensional diagram of the displacement gradient change; (b) contour map

    Figure 8.  Vibration displacement gradient change under the (0,2) mode. (a) Three-dimensional diagram of displacement gradient change; (b) contour map

    Figure 9.  Mine modal shapes based on speckle interference fringes. (a) Under the (0,1) mode; (b) under the (0,2) mode

    Figure 10.  Acousto-optic mine detection experimental system based on laser speckle measurement

    Figure 11.  (a) The type-69 plastic case coach mine in dry sand. Bessel fringes obtained with different excitation sound frequencies and different sound pressure levels. (b) 110 Hz, 100 dB; (c) 110 Hz, 95 dB; (d) 110 Hz, 90 dB

    Figure 12.  Bessel fringes of the type-69 plastic case coach mine in wet sand with different excitation sound frequencies and different sound pressure levels. (a) 110 Hz, 100 dB; (b) 110 Hz, 95 dB; (c) 110 Hz, 90 dB

    Figure 13.  (a) Type 72 anti-personnel coach mine, and it’s Bessel fringes obtained with different excitation sound frequencies and different sound pressure levels. (b) 145 Hz, 100 dB; (c) 145 Hz, 98 dB; (d) 145 Hz, 95 dB

    Figure 14.  (a) Brick in dry sand and (b) it’s speckle interferometer detection results obtained with the excitation sound frequency of 145 Hz and the sound pressure level of 100 dB

    Figure 15.  Vibration amplitude of the type-69 plastic case coach mine in dry sand with the excitation sound frequency of 110 Hz and the sound pressure level of 100 dB. (a) Three-dimensional vibration; (b) contour map

    Table  1.   Simulation parameter setting

    ParameterSimulation settings
    Transverse stiffness ratio1000
    Poisson’s ratio:$ \upsilon $0.33
    Young’s modulus: E17×1019 Pa
    The radius of the landmine’s upper casing:$ a $13.5 cm
    Laser wavelength:$ \mathrm{\lambda } $658 nm
    Shear amount:$ \delta x $6 mm
    Image size512×512
    Mode(0,1) order, (0,2) order
    下载: 导出CSV
  • [1] WANG CH, MA H, LI J H, et al. Application of laser self-mixing vibration measurement technique in acoustic resonance landmine detection[J]. Optics and Precision Engineering, 2021, 29(4): 710-720. (in Chinese)
    [2] GUO T, JI M R, SHEN W, et al. The development of international equipments for non-metal landmine detection[J]. Equipment for Geotechnical Engineering, 2010, 11(6): 29-31,28. (in Chinese) doi: 10.3969/j.issn.1009-282X.2010.06.007
    [3] POPOV M O, STANKEVICH S A, MOSOV S P, et al. . Landmine detection with UAV-based optical data fusion[C]. IEEE Eurocon 2021-19th International Conference on Smart Technologies, IEEE, 2021: 175-178.
    [4] KHODOR M, MAKKI I, YOUNES R, et al. Landmine detection in hyperspectral images based on pixel intensity[J]. Remote Sensing Applications:Society and Environment, 2021, 21: 100468. doi: 10.1016/j.rsase.2021.100468
    [5] ABEDIN A F Z, IBRAHIM N, ZABIDI N A, et al. The perturbation of backscattered fast neutrons spectrum caused by the resonances of C, N and O for possible use in pyromaterial detection[J]. AIP Conference Proceedings, 2015, 1659(1): 030005.
    [6] JAMIL A K M, SIVANESAN A, IZAKE E L, et al. Molecular recognition of 2, 4, 6-trinitrotoluene by 6-aminohexanethiol and surface-enhanced Raman scattering sensor[J]. Sensors and Actuators B:Chemical, 2015, 221: 273-280. doi: 10.1016/j.snb.2015.06.046
    [7] GILLANDERS R N, GLACKIN J M, BABIĆ Z, et al. Biomonitoring for wide area surveying in landmine detection using honeybees and optical sensing[J]. Chemosphere, 2021, 273: 129646. doi: 10.1016/j.chemosphere.2021.129646
    [8] BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4): 1482-1498. doi: 10.1063/1.1728759
    [9] SABATIER J M, BASS H E, BOLEN L N, et al. Acoustically induced seismic waves[J]. The Journal of the Acoustical Society of America, 1986, 80(2): 646-649. doi: 10.1121/1.394058
    [10] SABATIER J M, BASS H E, BOLEN L N, et al. The interaction of airborne sound with the porous ground: the theoretical formulation[J]. The Journal of the Acoustical Society of America, 1986, 79(5): 1345-1352. doi: 10.1121/1.393662
    [11] XIANG N, SABATIER J M. An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling[J]. The Journal of the Acoustical Society of America, 2003, 113(3): 1333-1341. doi: 10.1121/1.1543554
    [12] DONSKOY D. Nonlinear seismo-acoustic landmine detection[J]. The Journal of the Acoustical Society of America, 2004, 115(5): 2382.
    [13] DONSKOY D, REZNIK A, ZAGRAI A, et al. Nonlinear vibrations of buried landmines[J]. The Journal of the Acoustical Society of America, 2005, 117(2): 690-700. doi: 10.1121/1.1850410
    [14] ZAGRAI A N, DONSKOY D M, EKIMOV A E. Resonance vibrations of buried landmines[J]. Proceedings of SPIE, 2004, 5415: 21-29. doi: 10.1117/12.540670
    [15] ZAGRAI A N, DONSKOY D M, EKIMOV A E. Structural vibrations of buried land mines[J]. The Journal of the Acoustical Society of America, 2005, 118(6): 3619-3628. doi: 10.1121/1.2108754
    [16] ALBERTS W, SABATIER J M, WAXLER R. Resonance frequency shift saturation in land mine burial simulation experiments[J]. The Journal of the Acoustical Society of America, 2006, 120(4): 1881-1886. doi: 10.1121/1.2338294
    [17] ZHANG Q K, ZHONG SH C, LIN J W, et al. High-performance optical coherence velocimeter: theory and applications[J]. Optics Express, 2019, 27(2): 965-979. doi: 10.1364/OE.27.000965
    [18] BURGETT R D, BRADLEY M R, DUNCAN M, et al. Mobile mounted laser Doppler vibrometer array for acoustic landmine detection[J]. Proceedings of SPIE, 2003, 5089: 665-672. doi: 10.1117/12.487186
    [19] VALEAU V, SABATIER J, COSTLEY R D, et al. Development of a time-frequency representation for acoustic detection of buried objects[J]. The Journal of the Acoustical Society of America, 2004, 116(5): 2984-2995. doi: 10.1121/1.1806824
    [20] WANG CH, DUAN N Y, WU ZH Q, et al. Method for detecting multi-modal vibration characteristics of landmines[J]. Instrumentation, 2018, 5(4): 39-45.
    [21] WU ZH Q, DUAN N Y, WANG CH, et al. Experimental study on acoustic-to-seismic landmine detection based on laser self-mixing interferometer[J]. Proceedings of SPIE, 2018, 10827: 108271W.
    [22] RAJESH K R, MURALI R, MOHANACHANDRAN R. Realisation of ultrasonic Doppler Vibrometer array for landmine detection[C]. 2012 IEEE International Ultrasonics Symposium Proceedings, IEEE, 2012: 1027-1030.
    [23] LI J H, MA H, YANG CH Y, et al. Research progress of the laser vibration measurement techniques for acoustic-to-seismic coupling landmine detection[J]. Chinese Optics, 2021, 14(3): 487-502. doi: 10.37188/CO.2020-0134
    [24] LV C C, WANG K F, GU G Q, et al. Accurate full-edge detection and depth measurement of internal defects using digital speckle pattern interferometry[J]. NDT &E International, 2019, 102: 1-8.
    [25] YAN P ZH, WANG Y H, SUN F Y, et al. Shearography for non-destructive testing of specular reflecting objects using scattered light illumination[J]. Optics &Laser Technology, 2019, 112: 452-457.
    [26] CHAO J, JING W C, XU T H, et al. Electronic speckle-shearing pattern interferometry for vibration analysis[J]. Nanotechnology and Precision Engineering, 2006, 4(1): 58-62.
    [27] GOODMAN J W. Introduction to Fourier Optics[M]. New York: The McGraw-Hill Companies, 1968.
    [28] ZHANG X Q, WANG CH, LI J H, et al. Use of laser speckle shearing interferometric vibration measurement system for acoustic-to-seismic landmine detection[J]. Optical Engineering, 2021, 60(8): 084102.
    [29] FRANCIS D, TATAM R P, GROVES R M. Shearography technology and applications: a review[J]. Measurement Science and Technology, 2010, 21(10): 102001. doi: 10.1088/0957-0233/21/10/102001
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  81
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 修回日期:  2022-02-28
  • 网络出版日期:  2022-06-28

目录

    /

    返回文章
    返回