留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of stimulated Brillouin scattering in As2S3 photonic crystal fibers at the mid-infrared waveband

SUN Hui-jie HOU Shang-lin LEI Jing-li

孙慧杰, 侯尚林, 雷景丽. 中红外波段As2S3光子晶体光纤中受激布里渊散射的研究[J]. 中国光学(中英文), 2022, 15(4): 835-844. doi: 10.37188/CO.EN.2022-0003
引用本文: 孙慧杰, 侯尚林, 雷景丽. 中红外波段As2S3光子晶体光纤中受激布里渊散射的研究[J]. 中国光学(中英文), 2022, 15(4): 835-844. doi: 10.37188/CO.EN.2022-0003
SUN Hui-jie, HOU Shang-lin, LEI Jing-li. Investigation of stimulated Brillouin scattering in As2S3 photonic crystal fibers at the mid-infrared waveband[J]. Chinese Optics, 2022, 15(4): 835-844. doi: 10.37188/CO.EN.2022-0003
Citation: SUN Hui-jie, HOU Shang-lin, LEI Jing-li. Investigation of stimulated Brillouin scattering in As2S3 photonic crystal fibers at the mid-infrared waveband[J]. Chinese Optics, 2022, 15(4): 835-844. doi: 10.37188/CO.EN.2022-0003

中红外波段As2S3光子晶体光纤中受激布里渊散射的研究

详细信息
  • 中图分类号: O437.2

Investigation of stimulated Brillouin scattering in As2S3 photonic crystal fibers at the mid-infrared waveband

doi: 10.37188/CO.EN.2022-0003
Funds: Supported by National Natural Science Foundation of China (No. 61665005); HongLiu First-class Disciplines Development Program of Lanzhou University of Technology
More Information
    Author Bio:

    SUN Huijie (1997—), male, was born in Zibo, Shandong province. He received his bachelor’s degree from Shandong University of Science and Technology in 2019. His research interests are on stimulated Brillouin scattering in mid-infrared fibers. E-mail: sunhj1997@foxmail.com

    HOU Shanglin (1970—), male, was born in Tianshui, Gansu province. He received his Ph.D degree from Beijing University of Posts and Telecommunications in 2008. Currently, he is a professor in  School of Science on Lanzhou University of Technology. His research interests are on optical information transmission and fiber optic communication. E-mail: houshanglin@vip.163.com

    Corresponding author: houshanglin@vip.163.com
  • 摘要:

    通过有限元方法研究了As2S3光子晶体光纤在2 μm至6 μm波段的受激布里渊散射。数值结果表明,当空气占空比小于0.6时,所提出的光子晶体光纤可保持单模工作。布里渊频移主要受泵浦波长和光纤结构的影响,泵浦波长从2 μm增加到6 μm时,布里渊频移减小了4.16 GHz;而当空气占空比由0.5增加到0.6时,布里渊频移变化量仅为兆赫兹量级。布里渊增益谱的半高全宽取决于声子寿命,泵浦波长为2 μm时布里渊增益谱的半高全宽是泵浦波长为6 μm时的9倍。在空气填充率为0.5和0.6的情况下,提出的光子晶体光纤的最大布里渊增益分别为2.413×10−10 m/W和2.429×10−10 m/W。在光纤有效长度相同的条件下,布里渊阈值与泵浦波长正相关,在空气填充率为0.5和0.6的光子晶体光纤中,使用6 μm泵浦时的布里渊阈值比使用2 μm时分别增大了27.8%和19.6%。这些数值结果对于中红外波段设计和制造基于所提出光纤的光学设备或光学传感器具有重要意义。

     

  • Figure 1.  The cross-section of the As2S3 PCF

    Figure 2.  Spatial distributions of FOMs with different AFFs at pump wavelengths of (a) 2 μm, (b) 4 μm and (c) 6 μm

    Figure 3.  The effective mode area of FOMs with different AFFs at pump wavelength from 2 μm to 6 μm.

    Figure 4.  (a) The spatial distribution of the FSM. (b) The dispersion of the refractive index of FSMs with different AFFs

    Figure 5.  The normalized frequency V versus pump wavelengths at different AFFs

    Figure 6.  The effective refractive index of FOMs with different AFFs at pump wavelengths from 2 μm to 6 μm.

    Figure 7.  Spatial distributions of acoustic modes with different AFFs and pump wavelengths. The acoustic modes in each case in the figure are L01-like, L02-like and L03-like modes from left to right

    Figure 8.  BGS at an AFF of 0.5 and a pump wavelength of 6 μm

    Figure 9.  BGS at an AFF of 0.5 and a pump wavelength of 2 μm

    Figure 10.  The BGS for interaction between the L01-like acoustic mode and the FOM as a function of pump wavelength for PCF with an AFF of (a) 0.5 and (b) 0.6. The 0 dB in (a) and (b) respectively correspond to 2.413×10−10 m/W and 2.429×10−10 m/W.

    Figure 11.  The relative Brillouin threshold for PCFs with AFFs of 0.5 and 0.6 versus the pump wavelength.

    Table  1.   Material parameters of As2S3

    Physical propertyAs2S3
    Density ρ(kg/m3)3210
    Young modulus Y(GPa)16.2
    Poisson ratio vp0.285
    Photo-elastic tensor p110.25
    Photo-elastic tensor p120.24
    Photo-elastic tensor p440.005
    下载: 导出CSV
  • [1] GUAN X, SHI W, RUSCH L A. Ultra-dense wavelength-division multiplexing with microring modulator[J]. Journal of Lightwave Technology, 2021, 39(13): 4300-4306. doi: 10.1109/JLT.2021.3070515
    [2] LUBANA A, KAUR S, MALHOTRA Y. Performance optimization of a super-dense wavelength division multiplexing system employing a Raman + erbium–ytterbium doped fiber hybrid optical amplifier[J]. Journal of Optical Technology, 2021, 88(6): 308-314. doi: 10.1364/JOT.88.000308
    [3] MA Z Y, WU Q Q, LI Q H, et al. Ultra-dense wavelength division multiplexing passive optical network[J]. Laser &Optoelectronics Progress, 2021, 58(5): 0500006. (in Chinese)
    [4] ZHANG CH J, GAO M Y, SHI Y, et al. Experimental comparison of orthogonal frequency division multiplexing and universal filter multi-carrier transmission[J]. Journal of Lightwave Technology, 2021, 39(22): 7052-7060. doi: 10.1109/JLT.2021.3113388
    [5] XU X Y, YUE D W. Orthogonal frequency division multiplexing modulation techniques in visible light communication[J]. Chinese Optics, 2021, 14(3): 516-527. (in Chinese) doi: 10.37188/CO.2020-0051
    [6] ZHU K, ZHOU B, WU H, et al. Multipath distributed acoustic sensing system based on phase-sensitive optical time-domain reflectometry with frequency division multiplexing technique[J]. Optics and Lasers in Engineering, 2021, 142: 106593. doi: 10.1016/j.optlaseng.2021.106593
    [7] WU SH Z, WEN H Q, CHEN X H. Method for reducing the influence of crosstalk on quasi-distributed sensing network with time-division multiplexing fibre Bragg gratings[J]. Journal of Physics:Conference Series, 2021, 1754: 012212. doi: 10.1088/1742-6596/1754/1/012212
    [8] PEI L, LI ZH Q, WANG J SH, et al. Review on gain equalization technology of fiber amplifier using space division multiplexing[J]. Acta Optica Sinica, 2021, 41(1): 0106001. (in Chinese) doi: 10.3788/AOS202141.0106001
    [9] PUTTNAM B J, RADEMACHER G, LUÍS R S. Space-division multiplexing for optical fiber communications[J]. Optica, 2021, 8(9): 1186-1203. doi: 10.1364/OPTICA.427631
    [10] DEROH M, BEUGNOT J C, HAMMANI K, et al. Comparative analysis of stimulated Brillouin scattering at 2  µm in various infrared glass-based optical fibers[J]. Journal of the Optical Society of America B, 2020, 37(12): 3792-3800. doi: 10.1364/JOSAB.401252
    [11] WANG X, ZHOU P, WANG X L, et al. Tunable slow light via stimulated Brillouin scattering at 2 μm based on Tm-doped fiber amplifiers[J]. Optics Letters, 2015, 40(11): 2584-2587. doi: 10.1364/OL.40.002584
    [12] TAO G M, EBENDORFF-HEIDEPRIEM H, STOLYAROV A M, et al. Infrared fibers[J]. Advances in Optics and Photonics, 2015, 7(2): 379-458. doi: 10.1364/AOP.7.000379
    [13] ALIMAGHAM F, WINTERBURN J, DOLMAN B, et al. Real-time bioprocess monitoring using a mid-infrared fibre-optic sensor[J]. Biochemical Engineering Journal, 2021, 167: 107889. doi: 10.1016/j.bej.2020.107889
    [14] WANG H Y, BAKER C, CHEN L, et al. Stimulated Brillouin scattering in high-birefringence elliptical-core As2Se3-PMMA microfibers[J]. Optics Letters, 2021, 46(5): 945-948. doi: 10.1364/OL.418137
    [15] CHEN X Y, YAN X, ZHANG X N, et al. Theoretical investigation of mid-infrared temperature sensing based on four-wave mixing in a CS2-filled GeAsSeTe microstructured optical fiber[J]. IEEE Sensors Journal, 2021, 21(9): 10711-10718. doi: 10.1109/JSEN.2021.3061654
    [16] CARCREFF J, CHEVIRÉ F, GALDO E, et al. Mid-infrared hollow core fiber drawn from a 3D printed chalcogenide glass preform[J]. Optical Materials Express, 2021, 11(1): 198-209. doi: 10.1364/OME.415090
    [17] XU Q, GAO W Q, LI X, et al. Investigation on optical and acoustic fields of stimulated Brillouin scattering in As2S3 suspended-core microstructured optical fibers[J]. Optik, 2017, 133: 51-59. doi: 10.1016/j.ijleo.2017.01.003
    [18] FLOREA C, BASHKANSKY M, DUTTON Z, et al. Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers[J]. Optics Express, 2006, 14(25): 12063-12070. doi: 10.1364/OE.14.012063
    [19] VANI P, VINITHA G, NASEER K A, et al. Thulium-doped barium tellurite glasses: structural, thermal, linear, and non-linear optical investigations[J]. Journal of Materials Science:Materials in Electronics, 2021, 32(18): 23030-23046. doi: 10.1007/s10854-021-06787-5
    [20] DEROH M, BEUGNOT J C, KIBLER B, et al. . Stimulated Brillouin scattering in Germanium-doped-core optical fibers up to 98% mol doping level[C]. Proceedings of Specialty Optical Fibers 2018, Optica Publishing Group, 2018: SoTu3G. 2.
    [21] LAMBIN-IEZZI V, LORANGER S, SAAD M, et al. Stimulated Brillouin scattering in SM ZBLAN fiber[J]. Journal of Non-Crystalline Solids, 2013, 359: 65-68. doi: 10.1016/j.jnoncrysol.2012.10.004
    [22] SHINKAWA K, ODA Y, MA Z T, et al. Transient stimulated brillouin scattering in multimode As2S3 glass fiber[J]. Japanese Journal of Applied Physics, 2009, 48(7R): 070215.
    [23] DIOUF M, TRICHLLI A, ZGHAL M. Stimulated Brillouin scattering-based slow light using singlemode As2S3 chalcogenide photonic crystal fiber for temperature sensing[C]. Proceedings of Frontiers in Optics 2019, Optica Publishing Group, 2019: JTu3A. 63.
    [24] RODNEY W S, MALITSON I H, KING T A. Refractive index of arsenic trisulfide[J]. Journal of the Optical Society of America, 1958, 48(9): 633-636. doi: 10.1364/JOSA.48.000633
    [25] WIEDERHECKER G S, DAINESE P, MAYER ALEGRE T P. Brillouin optomechanics in nanophotonic structures[J]. APL Photonics, 2019, 4(7): 071101. doi: 10.1063/1.5088169
    [26] TIMOSHENKO S P, GOODIER J N. Theory of Elasticity[M]. New York: McGraw-Hill, 1970.
    [27] DEMIR H, OZSOY S. Solid-core square-lattice photonic crystal fibers: comparative studies of the single-mode regime and numerical aperture for circular and square air-holes[J]. Optical and Quantum Electronics, 2011, 42(14): 851-862.
    [28] DASGUPTA S, POLETTI F, LIU SH, et al. Modeling brillouin gain spectrum of solid and microstructured optical fibers using a finite element method[J]. Journal of Lightwave Technology, 2011, 29(1): 22-30. doi: 10.1109/JLT.2010.2091106
    [29] AGRAWAL G P. Nonlinear Fiber Optics[M]. 4th ed. Amsterdam: Academic Press, 2007.
    [30] OGUSU K, LI H P, KITAO M. Brillouin-gain coefficients of chalcogenide glasses[J]. Journal of the Optical Society of America B, 2004, 21(7): 1302-1304. doi: 10.1364/JOSAB.21.001302
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  112
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-23
  • 录用日期:  2022-04-08
  • 修回日期:  2022-04-08
  • 网络出版日期:  2022-05-03

目录

    /

    返回文章
    返回