留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase measurement with dual-frequency grating in a nonlinear system

QIAO Nao-sheng SHANG Xue

乔闹生, 尚雪. 非线性系统中双频光栅相位测量[J]. 中国光学(中英文), 2023, 16(3): 726-732. doi: 10.37188/CO.EN.2022-0013
引用本文: 乔闹生, 尚雪. 非线性系统中双频光栅相位测量[J]. 中国光学(中英文), 2023, 16(3): 726-732. doi: 10.37188/CO.EN.2022-0013
QIAO Nao-sheng, SHANG Xue. Phase measurement with dual-frequency grating in a nonlinear system[J]. Chinese Optics, 2023, 16(3): 726-732. doi: 10.37188/CO.EN.2022-0013
Citation: QIAO Nao-sheng, SHANG Xue. Phase measurement with dual-frequency grating in a nonlinear system[J]. Chinese Optics, 2023, 16(3): 726-732. doi: 10.37188/CO.EN.2022-0013

非线性系统中双频光栅相位测量

详细信息
  • 中图分类号: O438.2

Phase measurement with dual-frequency grating in a nonlinear system

doi: 10.37188/CO.EN.2022-0013
Funds: Supported by Key Scientific Research Project of Hunan Provincial Department of Education (No. 22A0484); National Natural Science Foundation of China (No. 12104150)
More Information
    Author Bio:

    QIAO Nao-sheng (1971—), Ph.D, Professor, International College, Hunan University of Arts and Science. His research interests are in optical information processing. E-mail: naoshengqiao@163.com

    Corresponding author: naoshengqiao@163.com
  • 摘要:

    为了在非线性测量系统中获得更好的相位测量结果,提出了一种在几乎消除非线性影响后使用双频光栅投影的相位测量方法。首先,讨论了相位测量系统的非线性效应,分析了频域中存在高阶频谱成份的基本原因,给出了减小非线性效应并分离基频信息的基本方法。然后,在减小系统非线性效应影响的基础上,分析了使用双频光栅投影测量被测物体条纹图像的相位基本原理。为验证所提出的相位测量方法的有效性,进行了计算机仿真和实际实验,获得了良好结果。在仿真实验中,该方法的误差值为有非线性影响方法的27.97%,为几乎没有非线性影响方法的52.51%;在实际实验中,该方法的相位恢复效果最好。表明采用本文方法所测量的相位效果好,误差较小。

     

  • Figure 1.  Simulated phase

    Figure 2.  Spectra distributions along x axis

    Figure 3.  Phase measurement error diagrams gained by three different simulation methods

    Figure 4.  The structural frame for the experimental device

    Figure 5.  The experiment model used in the experiment

    Figure 6.  Phase measurement results gained by using the three different experiment methods

  • [1] CAI B L, YANG Y, WU J, et al. An improved gray-level coding method for absolute phase measurement based on half-period correction[J]. Optics and Lasers in Engineering, 2020, 128: 106012. doi: 10.1016/j.optlaseng.2020.106012
    [2] PENG R J, TIAN M R, XU L, et al. A novel method of generating phase-shifting sinusoidal fringes for 3D shape measurement[J]. Optics and Lasers in Engineering, 2021, 137: 106401. doi: 10.1016/j.optlaseng.2020.106401
    [3] HOU Y L, LIANG H G, LI F Q, et al. Spatial-temporal combined phase unwrapping in phase measurement profilometry[J]. Acta Optica Sinica, 2022, 42(1): 0112006. (in Chinese) doi: 10.3788/AOS202242.0112006
    [4] QIAO Z K. Study for phase retrieval based on dual frequency grating projection[J]. Optik, 2021, 245: 167668. doi: 10.1016/j.ijleo.2021.167668
    [5] ZHANG X, SHAO SH Y, ZHU X, et al. Measurement and calibration of the intensity transform function of the optical 3D profilometry system[J]. Chinese Optics, 2018, 11(1): 123-130. (in Chinese) doi: 10.3788/co.20181101.0123
    [6] YIN W, HU Y, FENG SH J, et al. Single-shot 3D shape measurement using an end-to-end stereo matching network for speckle projection profilometry[J]. Optics Express, 2021, 29(9): 13388-13407. doi: 10.1364/OE.418881
    [7] XIAO Y SH, CAO Y P, WU Y CH, et al. Single orthogonal sinusoidal grating for gamma correction in digital projection phase measuring profilometry[J]. Optical Engineering, 2013, 52(5): 053605. doi: 10.1117/1.OE.52.5.053605
    [8] YE X, CHENG H B, WU H Y, et al. Gamma correction for three-dimensional object measurement by phase measuring profilometry[J]. Optik, 2015, 126(24): 5534-5538. doi: 10.1016/j.ijleo.2015.09.028
    [9] YANG Y, HOU Q Y, LI Y, et al. Phase error compensation based on Tree-Net using deep learning[J]. Optics and Lasers in Engineering, 2021, 143: 106628. doi: 10.1016/j.optlaseng.2021.106628
    [10] KAMAGARA A, WANG X ZH, LI S K. Towards gamma-effect elimination in phase measurement profilometry[J]. Optik, 2018, 172: 1089-1099. doi: 10.1016/j.ijleo.2018.07.059
    [11] LI D L, CAO Y P. 2+1 phase-shifting algorithm based on background correction[J]. Acta Photonica Sinica, 2019, 48(4): 0415001. (in Chinese) doi: 10.3788/gzxb20194804.0415001
    [12] QIAO N SH, SUN P. Influence of CCD nonlinearity effect on the three-dimensional shape measurement of dual frequency grating[J]. Chinese Optics, 2021, 14(3): 661-669. (in Chinese) doi: 10.37188/CO.2020-0143
    [13] DU M X, YAN Y F, ZHANG R, et al. 3D position angle measurement based on a lens array[J]. Chinese Optics, 2022, 15(1): 45-55. (in Chinese) doi: 10.37188/CO.2021-0129
    [14] LI J, SU X Y, GUO L R. Improved Fourier transform profilometry for the automatic measurement of three-dimensional object shapes[J]. Optical Engineering, 1990, 29(12): 1439-1444. doi: 10.1117/12.55746
    [15] TAKEDA M, MUTOH K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics, 1983, 22(24): 3977-3982. doi: 10.1364/AO.22.003977
    [16] DAI M L, YANG F J, LIU C, et al. A dual-frequency fringe projection three-dimensional shape measurement system using a DLP 3D projector[J]. Optics Communications, 2017, 382: 294-301. doi: 10.1016/j.optcom.2016.08.004
  • 加载中
图(6)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  331
  • PDF下载量:  273
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-17
  • 修回日期:  2022-09-19
  • 录用日期:  2022-09-22
  • 网络出版日期:  2022-10-13

目录

    /

    返回文章
    返回