留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The Poynting vectors, spin and orbital angular momentums of uniformly polarized cosh-Pearcey-Gauss beams in the far zone

LIAO Sai CHENG Ke HUANG Hong-wei YANG Cenghao LIANG Meng-ting SUN Wang-xuan

廖赛, 程科, 黄宏伟, 杨嶒浩, 梁梦婷, 孙望轩. 均匀偏振cosh-Pearcey-Gauss光束的远场坡印廷矢量,自旋与轨道角动量[J]. 中国光学(中英文). doi: 10.37188/CO.EN.2022-0022
引用本文: 廖赛, 程科, 黄宏伟, 杨嶒浩, 梁梦婷, 孙望轩. 均匀偏振cosh-Pearcey-Gauss光束的远场坡印廷矢量,自旋与轨道角动量[J]. 中国光学(中英文). doi: 10.37188/CO.EN.2022-0022
LIAO Sai, CHENG Ke, HUANG Hong-wei, YANG Cenghao, LIANG Meng-ting, SUN Wang-xuan. The Poynting vectors, spin and orbital angular momentums of uniformly polarized cosh-Pearcey-Gauss beams in the far zone[J]. Chinese Optics. doi: 10.37188/CO.EN.2022-0022
Citation: LIAO Sai, CHENG Ke, HUANG Hong-wei, YANG Cenghao, LIANG Meng-ting, SUN Wang-xuan. The Poynting vectors, spin and orbital angular momentums of uniformly polarized cosh-Pearcey-Gauss beams in the far zone[J]. Chinese Optics. doi: 10.37188/CO.EN.2022-0022

均匀偏振cosh-Pearcey-Gauss光束的远场坡印廷矢量,自旋与轨道角动量

详细信息
  • 中图分类号: TN929.1;

The Poynting vectors, spin and orbital angular momentums of uniformly polarized cosh-Pearcey-Gauss beams in the far zone

doi: 10.37188/CO.EN.2022-0022
Funds: Supported by Sichuan Science and Technology Program of China (No. 23NSFSC1097)
More Information
    Author Bio:

    LIAO Sai (1998—), M.E, College of Optoelectronic Engineering, Chengdu University of Information Technology. His research interests are in the vector structures of catastrophe beams. E-mail: 1399417658@qq.com

    CHENG Ke (1979—), Ph.D, Professor, College of Optoelectronic Engineering, Chengdu University of Information Technology. His research interests are in the propagation and control of High-Power Lasers. E-mail: ck@cuit.edu.cn

    Corresponding author: E-mail: ck@cuit.edu.cn
  • 摘要:

    我们提出了均匀偏振cosh-Pearcey-Gauss 光束,其主要由双曲余弦函数(n, Ω)和偏振相关角度(α, δ)所调制。基于矢量角谱法和稳相法,研究了该光束的远场坡印廷矢量、自旋角动量和轨道角动量。研究结果表明:较大的双曲余弦函数值能将远场坡印廷矢量、自旋角动量和轨道角动量分割成多瓣抛物线结构。虽然左旋和右旋椭圆偏振不能影响整个光束结构,但却可通过调节TE和TM项的左半边和右半边的分布权重,进而分辨出光束的远场坡印廷矢量和角动量分布。本文结果对信息存储与偏振成像技术领域有着潜在的应用价值。

     

  • Figure 1.  The initial intensity and angular spectrum of the cPeG beams with different initial polarization states for n=1, 2 and 4. (a1), (a2): α=π/4, δ=π/8; (b1), (b2): α=0, δ=0; (c1), (c2): α=π/4, δ=−3π/4; The phase distribution and polarization states are described in the top left and right in Figs.1 (a1)−(c1). Blue: left-handed elliptical polarization; Red: right-handed elliptical polarization; Black: linear polarization. The parameters are x0=y0=100 μm and Ω=1.4.

    Figure 2.  The theoretical design of the cPeG beams with uniform polarization. BS: beam splitter; SLM: spatial Light Modulator.

    Figure 3.  Normalized longitudinal Poynting vector (backgrounds) and transversal Poynting vector (arrows) of cPeG beams for different uniform polarizations (α, δ) at z=50z0. (a1)−(c1): TE term; (a2)−(c2): TM term; (a3)−(c3): whole beam. The parameters are n=2 and Ω=1.4. The red point symbolizes topological charge l=+1, and the white point denotes l=−1

    Figure 4.  Normalized longitudinal Poynting vector (backgrounds) and transverse Poynting vector (arrows) of cPeG beams for different n and Ω at z=50z0, where the uniform polarization is (α, δ)=(π/4, π/8).

    Figure 5.  Normalized longitudinal SAM (3D and 2D) and transverse SAM (arrows) of cPeG beams at z=50z0. (a1)−(a3): α=π/4, δ=π/8; (b1)−(b3): α=π/4, δ=−3π/4. The other parameters are the same as those in Fig. 3.

    Figure 6.  Normalized longitudinal (3D and 2D) SAM and transverse SAM (arrows) of cPeG beams (n=1, 4) at z=50z0. The other parameters are the same as those in Figs. 5 (a1)−(b3): α=π/4, δ=π/8.

    Figure 7.  Normalized longitudinal OAM (3D and 2D) and transverse OAM (arrows) of cPeG beams (Ω=1.4) at z=50z0. (a1)−(a3): α=π/4, δ=π/8; (b1)-(b3): α= 0, δ= 0; (c1)−(c3): α=π/4, δ=−3π/4; The other parameters are the same as those in Fig. 3. n=2

    Figure 8.  Normalized longitudinal and transverse (arrows) OAM of cPeG beams (n=1, 4) at z=50z0. The other parameters are the same as those in Fig. 4.

  • [1] PEARCEY T. XXXI. The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic[J]. The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science, 1946, 37(268): 311-317. doi: 10.1080/14786444608561335
    [2] RING J D, LINDBERG J, MOURKA A, et al. Auto-focusing and self-healing of Pearcey beams[J]. Optics Express, 2012, 20(17): 18955-18966. doi: 10.1364/OE.20.018955
    [3] KOVALEV A A, KOTLYAR V V, ZASKANOV S G, et al. Half Pearcey laser beams[J]. Journal of Optics, 2015, 17(3): 035604. doi: 10.1088/2040-8978/17/3/035604
    [4] REN ZH J, LI X D, JIN H ZH, et al. Construction of Bi-Pearcey beams and their mathematical mechanism[J]. Acta Physica Sinica, 2016, 65(21): 214208. doi: 10.7498/aps.65.214208
    [5] LIU Y J, XU CH J, LIN Z J, et al. Auto-focusing and self-healing of symmetric odd-Pearcey Gauss beams[J]. Optics Letters, 2020, 45(11): 2957-2960. doi: 10.1364/OL.394443
    [6] GAO R, REN SH M, GUO T, et al. Propagation dynamics of chirped Pearcey-Gaussian beam in fractional Schrödinger equation under Gaussian potential[J]. Optik, 2022, 254: 168661. doi: 10.1016/j.ijleo.2022.168661
    [7] CHEN K H, QIU H X, WU Y, et al. Generation and control of dynamically tunable circular Pearcey beams with annular spiral-zone phase[J]. Science China Physics,Mechanics &Astronomy, 2021, 64(10): 104211.
    [8] ZHOU X Y, PANG Z H, ZHAO D M. Generalized ring pearcey beams with tunable autofocusing properties[J]. Annalen der Physik, 2021, 533(7): 2100110. doi: 10.1002/andp.202100110
    [9] NOSSIR N, DALIL-ESSAKALI L, BELAFHAL A. Diffraction of generalized Humbert–Gaussian beams by a helical axicon[J]. Optical and Quantum Electronics, 2021, 53(2): 94. doi: 10.1007/s11082-020-02662-5
    [10] ZHAO X L, JIA X T. Vectorial structure of arbitrary vector vortex beams diffracted by a circular aperture in the far field[J]. Laser Physics, 2018, 28(1): 015004. doi: 10.1088/1555-6611/aa9813
    [11] CHENG K, LU G, ZHONG X Q. Energy flux density and angular momentum density of radial Pearcey-Gauss vortex array beams in the far field[J]. Optik, 2017, 149: 189-197. doi: 10.1016/j.ijleo.2017.09.032
    [12] SHU L Y, CHENG K, LIAO S, et al. Spin angular momentum flux density of non-uniformly polarized vortex beams with tunable polarization angles in uniaxial crystals[J]. Optik, 2021, 243: 167464. doi: 10.1016/j.ijleo.2021.167464
    [13] YANG Q SH, XIE Z J, ZHANG M R, et al. Ultra-secure optical encryption based on tightly focused perfect optical vortex beams[J]. Nanophotonics, 2022, 11(5): 1063-1070. doi: 10.1515/nanoph-2021-0786
    [14] ZHU L W, CAO Y Y, CHEN Q Q, et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods[J]. Opto-Electronic Advances, 2021, 4(11): 210002. doi: 10.29026/oea.2021.210002
    [15] OUYANG X, XU Y, XIAN M C, et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing[J]. Nature Photonics, 2021, 15(12): 901-907. doi: 10.1038/s41566-021-00880-1
    [16] ALLEN L, BARNETT S M, PADGETT M J. Optical Angular Momentum[M]. Boca Raton: CRC Press, 2003.
    [17] BAI Y H, LV H R, FU X, et al. Vortex beam: generation and detection of orbital angular momentum [Invited][J]. Chinese Optics Letters, 2022, 20(1): 012601. doi: 10.3788/COL202220.012601
    [18] WU G H, LOU Q H, ZHOU J. Analytical vectorial structure of hollow Gaussian beams in the far field[J]. Optics Express, 2008, 16(9): 6417-6424. doi: 10.1364/OE.16.006417
    [19] CHENG K, LIANG M T, SHU L Y, et al. Polarization states and Stokes vortices of dual Butterfly-Gauss vortex beams with uniform polarization in uniaxial crystals[J]. Optics Communications, 2022, 504: 127471. doi: 10.1016/j.optcom.2021.127471
    [20] ZHOU G Q, NI Y ZH, ZHANG ZH W. Analytical vectorial structure of non-paraxial nonsymmetrical vector Gaussian beam in the far field[J]. Optics Communications, 2007, 272(1): 32-39. doi: 10.1016/j.optcom.2006.11.044
    [21] ZHOU G Q. Vectorial structure of an apertured Gaussian beam in the far field: an accurate method[J]. Journal of the Optical Society of America A, 2010, 27(8): 1750-1755. doi: 10.1364/JOSAA.27.001750
    [22] MANDEL L, WOLF E. Optical Coherence and Quantum Optics[M]. Cambridge: Cambridge University Press, 1995.
    [23] GU B, WEN B, RUI G H, et al. Varying polarization and spin angular momentum flux of radially polarized beams by anisotropic Kerr media[J]. Optics Letters, 2016, 41(7): 1566-1569. doi: 10.1364/OL.41.001566
    [24] ANDREWS D L, BABIKER M. The Angular Momentum of Light[M]. Cambridge: Cambridge University Press, 2012.
    [25] CHEN R P, CHEW K H, DAI C Q, et al. Optical spin-to-orbital angular momentum conversion in the near field of a highly nonparaxial optical field with hybrid states of polarization[J]. Physical Review A, 2017, 96(5): 053862. doi: 10.1103/PhysRevA.96.053862
  • 加载中
图(8)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  59
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-11
  • 录用日期:  2023-01-30
  • 网络出版日期:  2023-02-28

目录

    /

    返回文章
    返回