留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Double-slot ultra-compact polarization beam splitter based on asymmetric hybrid plasmonic structure

WANG Fang LIU Hua MA Tao MA Shou-dao LIU Yu-fang

王芳, 刘花, 马涛, 马首道, 刘玉芳. 基于非对称混合等离子体结构的双槽超紧凑偏振分束器[J]. 中国光学(中英文), 2023, 16(5): 1215-1225. doi: 10.37188/CO.EN.2022-0028
引用本文: 王芳, 刘花, 马涛, 马首道, 刘玉芳. 基于非对称混合等离子体结构的双槽超紧凑偏振分束器[J]. 中国光学(中英文), 2023, 16(5): 1215-1225. doi: 10.37188/CO.EN.2022-0028
WANG Fang, LIU Hua, MA Tao, MA Shou-dao, LIU Yu-fang. Double-slot ultra-compact polarization beam splitter based on asymmetric hybrid plasmonic structure[J]. Chinese Optics, 2023, 16(5): 1215-1225. doi: 10.37188/CO.EN.2022-0028
Citation: WANG Fang, LIU Hua, MA Tao, MA Shou-dao, LIU Yu-fang. Double-slot ultra-compact polarization beam splitter based on asymmetric hybrid plasmonic structure[J]. Chinese Optics, 2023, 16(5): 1215-1225. doi: 10.37188/CO.EN.2022-0028

基于非对称混合等离子体结构的双槽超紧凑偏振分束器

详细信息
  • 中图分类号: O436.3

Double-slot ultra-compact polarization beam splitter based on asymmetric hybrid plasmonic structure

doi: 10.37188/CO.EN.2022-0028
Funds: Supported by National Natural Science Foundation of China (NSFC) (No. 62075057)
More Information
    Author Bio:

    WANG Fang (1972—), female, born in Xinxiang, Henan Province, Ph.D, professor, doctoral supervisor, graduated from Henan Normal University in 2013 and is mainly engaged in the research of optical fiber sensing and new microelectronic device design. E-mail: 021034@htu.edu.cn

    LIU Hua (1995—), female, born in Anyang, Henan Province, master’s student, and is mainly engaged in the design of photoelectric integrated devices. E-mail: lh18237269109@163.com

    Corresponding author: lh18237269109@163.com
  • 摘要:

    为了提高偏振分束器的消光比,提出了一种由混合等离子体水平狭缝波导(HSW)和氮化硅混合垂直狭缝波导(VSW)组成的双槽超紧凑偏振分束器(PBS)。同时,包层材料为二氧化硅,既能防止混合等离子体氧化,又便于与其他器件集成。采用有限元方法仿真HSW和VSW的模态特性。HSW和VSW波导在特定的宽度下TE偏振模式是满足相位匹配的,而TM偏振模式相位不匹配。因此,HSW波导中的TE模式与VSW波导发生强耦合,而TM模式直接通过HSW波导。结果表明:在1.55 μm的TE模式下,PBS的消光比(ER)为35.1 dB,插入损耗(IL)为0.34 dB,在TM模式下,PBS的ER和IL分别为40.9 dB和2.65 dB。所设计的PBS有100 nm的工作带宽,具有高ER,低IL的特点,适用于光子集成电路(PICs)。

     

  • Figure 1.  (a) 3D schematic diagram, (b) cross-section and (c) top-view of the proposed PBS device

    Figure 2.  Influence of waveguide width on the effective refractive index. (a) The real part of the refractive index of TE mode and TM mode varying with width in the HSW and VSW; the field distribution of the TE mode in the (b) HSW and (c) VSW, and the field distribution of the TM mode in the (d) HSW and (e) VSW

    Figure 3.  Effect of waveguide spacing G. The effect of G on (a) the effective refractive index and (b) the coupling length p. Electric field profile of supermodes at 90 nm of G, (c) TE0, and (d) TE1

    Figure 4.  The influence of G on ER and IL at the cross and bar ports. Here, W2 = 302 nm, W3 = 550 nm, r1 =4 μm, λ=1.55 μm and G= 90 nm

    Figure 6.  The influence of λ on ER and IL at the cross and bar ports. Here, W2=302 nm, W3=550 nm, r1=4 μm, λ=1.55 μm and G= 90 nm

    Figure 5.  The influence of L1 on ER and IL at the cross and bar ports. Here, W2=302 nm, W3=550 nm, r1=4 μm, λ=1.55 μm and G= 90 nm

    Figure 7.  The light propagations in the designed PBS of the (a) TE-Ey, (b) TM-Ez

    Figure 8.  TE polarization beam splitting and electric field distribution at the corresponding position for the TE mode

    Figure 9.  TM polarization beam splitting and electric field distribution at the corresponding position for the TM mode

    Figure 10.  The fabrication process of the designed polarization beam splitter

    Figure 11.  Effects of different dimensional tolerances on ER and IL. (a) W1=302 nm, (b) H1=560 m and (c) H2=60 nm

    Figure 12.  Effects of different dimensional tolerances on ER and IL. (a) H3=180 nm and (b) H4=460 m

    Table  1.   Performance comparison of the polarization

    Reference
    paper
    λ
    (μm)
    Length
    (μm)
    ER
    (dB)
    IL
    (dB)
    Input
    mode
    Bandwidth
    (nm)
    [29]1.5526.2717<1TM100
    27TM
    [30]1.551127.10.41TE170
    [31]1.554301TE100
    270.18TM
    [32]1.551438.43.26TE100
    20.90.14TM
    [33]1.551626.70.05TE140
    21.3TM
    [34]1.559.945.6<0.3TE100
    8.320<0.1TM
    [35]3.52519.781.64TE400
    7.782.64TM
    This work1.555.240.92.65TM100
    35.10.34TE
    下载: 导出CSV
  • [1] GAO L F, HU F F, WANG X J, et al. Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic–dielectric coupling[J]. Applied Physics B, 2013, 113(2): 199-203. doi: 10.1007/s00340-013-5457-7
    [2] ZOU J, XIA X, CHEN G T, et al. Birefringence compensated silicon nanowire arrayed waveguide grating for CWDM optical interconnects[J]. Optics Letters, 2014, 39(7): 1834-1837. doi: 10.1364/OL.39.001834
    [3] HOSSEINI A, RAHIMI S, XU X, et al. Ultracompact and fabrication-tolerant integrated polarization splitter[J]. Optics Letters, 2011, 36(20): 4047-4049. doi: 10.1364/OL.36.004047
    [4] HUANG Y W, TU ZH, YI H X, et al. High extinction ratio polarization beam splitter with multimode interference coupler on SOI[J]. Optics Communications, 2013, 307: 46-49. doi: 10.1016/j.optcom.2013.05.055
    [5] LIANG T K, TSANG H K. Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides[J]. IEEE Photonics Technology Letters, 2005, 17(2): 393-395. doi: 10.1109/LPT.2004.839462
    [6] DAI D X, WANG ZH, BOWERS J E. Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler[J]. Optics Letters, 2011, 36(13): 2590-2592. doi: 10.1364/OL.36.002590
    [7] FENG J J, AKIMOTO R, ZENG H P. Asymmetric silicon slot-waveguide-assisted polarizing beam splitter[J]. IEEE Photonics Technology Letters, 2016, 28(12): 1294-1297. doi: 10.1109/LPT.2016.2541672
    [8] HSU C W, CHANG T K, CHEN J Y, et al. 8.13 μm in length and CMOS compatible polarization beam splitter based on an asymmetrical directional coupler[J]. Applied Optics, 2016, 55(12): 3313-3318. doi: 10.1364/AO.55.003313
    [9] KIM D W, LEE M H, KIM Y, et al. Planar-type polarization beam splitter based on a bridged silicon waveguide coupler[J]. Optics Express, 2015, 23(2): 998-1004. doi: 10.1364/OE.23.000998
    [10] KIM S, QI M H. Copper nanorod array assisted silicon waveguide polarization beam splitter[J]. Optics Express, 2014, 22(8): 9508-9516. doi: 10.1364/OE.22.009508
    [11] LIN SH Y, HU J J, CROZIER K B. Ultracompact, broadband slot waveguide polarization splitter[J]. Applied Physics Letters, 2011, 98(15): 151101. doi: 10.1063/1.3579243
    [12] NI B, XIAO J B. Ultracompact and broadband silicon-based polarization beam splitter using an asymmetrical directional coupler[J]. IEEE Journal of Quantum Electronics, 2017, 53(4): 1-8.
    [13] WU H, TAN Y, DAI D X. Ultra-broadband high-performance polarizing beam splitter on silicon[J]. Optics Express, 2017, 25(6): 6069-6075. doi: 10.1364/OE.25.006069
    [14] XU H N, SHI Y CH. On-chip silicon TE-pass polarizer based on asymmetrical directional couplers[J]. IEEE Photonics Technology Letters, 2017, 29(11): 861-864. doi: 10.1109/LPT.2017.2693223
    [15] XU Y, XIAO J B. Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers[J]. Optics Letters, 2016, 41(4): 773-776. doi: 10.1364/OL.41.000773
    [16] KIM D W, LEE M H, KIM Y, et al. Ultra-compact transverse magnetic mode-pass filter based on one-dimensional photonic crystals with subwavelength structures[J]. Optics Express, 2016, 24(19): 21560-21565. doi: 10.1364/OE.24.021560
    [17] ZHANG Y, HE Y, WU J Y, et al. High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations[J]. Optics Express, 2016, 24(6): 6586-6593. doi: 10.1364/OE.24.006586
    [18] GALAN J V, SANCHIS P, GARCIA J, et al. Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes[J]. Applied Optics, 2009, 48(14): 2693-2696. doi: 10.1364/AO.48.002693
    [19] KOMATSU M A, SAITOH K, KOSHIBA M. Design of highly-nonlinear horizontal slot waveguide with low and flat dispersion[J]. Optics Communications, 2013, 298-299: 180-184. doi: 10.1016/j.optcom.2013.01.047
    [20] SANCHIS P, BLASCO J, MARTINEZ A, et al. Design of silicon-based slot waveguide configurations for optimum nonlinear performance[J]. Journal of Lightwave Technology, 2007, 25(5): 1298-1305. doi: 10.1109/JLT.2007.893909
    [21] SUN CH W, RONG K X, GAN F Y, et al. An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure[J]. Applied Physics Letters, 2017, 111(10): 101105. doi: 10.1063/1.4997234
    [22] WANG J, LIANG D, TANG Y B, et al. Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler[J]. Optics Letters, 2013, 38(1): 4-6. doi: 10.1364/OL.38.000004
    [23] AO X Y, LIU L, WOSINSKI L, et al. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type[J]. Applied Physics Letters, 2006, 89(17): 171115. doi: 10.1063/1.2360201
    [24] DAI D X, BOWERS J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler[J]. Optics Express, 2011, 19(19): 18614-18620. doi: 10.1364/OE.19.018614
    [25] HEAVENS O S. Handbook of optical constants of solids II[J]. Journal of Modern Optics, 2011, 39(1): 189.
    [26] CHEE J, ZHU SH Y, LO G Q. CMOS compatible polarization splitter using hybrid plasmonic waveguide[J]. Optics Express, 2012, 20(23): 25345-25355. doi: 10.1364/OE.20.025345
    [27] AHMED R, RIFAT A A, SABOURI A, et al. Multimode waveguide based directional coupler[J]. Optics Communications, 2016, 370: 183-191. doi: 10.1016/j.optcom.2016.03.015
    [28] MA Y Q, FARRELL G, SEMENOVA Y, et al. Low loss, high extinction ration and ultra-compact plasmonic polarization beam splitter[J]. IEEE Photonics Technology Letters, 2014, 26(7): 660-663. doi: 10.1109/LPT.2014.2302354
    [29] NIKUFARD M, KHOMAMI A R. Hybrid plasmonic polarization splitter using three-waveguide directional coupler in InGaAsP/InP[J]. Optical and Quantum Electronics, 2016, 48(5): 296. doi: 10.1007/s11082-016-0576-0
    [30] NI B, XIAO J B. Plasmonic-assisted TE-pass polarizer for silicon-based slot waveguides[J]. IEEE Photonics Technology Letters, 2018, 30(5): 463-466. doi: 10.1109/LPT.2018.2798709
    [31] XIE Y, CHEN ZH X, YAN J, et al. Combination of surface plasmon polaritons and subwavelength grating for polarization beam splitting[J]. Plasmonics, 2020, 15(1): 235-241. doi: 10.1007/s11468-019-01032-6
    [32] XU ZH Y, LYU T, SUN X H. Compact silicon-based TM-pass/TE-divide polarization beam splitter using contra-directional grating couplers assisted by horizontal slot waveguide[J]. Optics Communications, 2019, 451: 17-22. doi: 10.1016/j.optcom.2019.05.054
    [33] ZHANG L, ZHANG L, FU X, et al. Compact, broadband and low-loss polarization beam splitter on lithium-niobate-on-insulator using a silicon nanowire assisted waveguide[J]. IEEE Photonics Journal, 2020, 12(5): 6601906.
    [34] NIU CH Q, LIU ZH, LI X L, et al. High extinction ratio polarization beam splitter realized by separately coupling[J]. IEEE Photonics Technology Letters, 2020, 32(18): 1183-1186. doi: 10.1109/LPT.2020.3016028
    [35] WANG F, CHEN Y K, LI CH Q, et al. Ultracompact and broadband mid-infrared polarization beam splitter based on an asymmetric directional coupler consisting of GaAs–CaF2 hybrid plasmonic waveguide and GaAs nanowire[J]. Optics Communications, 2022, 502: 127418. doi: 10.1016/j.optcom.2021.127418
    [36] FILIMONOVA N I, ILYUSHIN V A, VELICHKO A A. Molecular beam epitaxy of BaF2/CaF2 buffer layers on the Si(100) substrate for monolithic photoreceivers[J]. Optoelectronics,Instrumentation and Data Processing, 2017, 53(3): 303-308. doi: 10.3103/S8756699017030153
    [37] BARKAI M, LEREAH Y, GRÜNBAUM E, et al. Epitaxial growth of silicon and germanium films on CaF2/Si[J]. Thin Solid Films, 1986, 139(3): 287-297. doi: 10.1016/0040-6090(86)90058-1
    [38] CHENG ZH, WANG J, HUANG Y Q, et al. Realization of a compact broadband polarization beam splitter using the three-waveguide coupler[J]. IEEE Photonics Technology Letters, 2019, 31(22): 1807-1810. doi: 10.1109/LPT.2019.2948076
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  611
  • HTML全文浏览量:  286
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 修回日期:  2023-01-30
  • 录用日期:  2023-02-16
  • 网络出版日期:  2023-02-22

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!