留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InP基高功率短波长量子级联激光器设计

王琪 刘云 王立军

王琪, 刘云, 王立军. InP基高功率短波长量子级联激光器设计[J]. 中国光学, 2012, 5(1): 83-91. doi: 10.3788/CO.20120501.0083
引用本文: 王琪, 刘云, 王立军. InP基高功率短波长量子级联激光器设计[J]. 中国光学, 2012, 5(1): 83-91. doi: 10.3788/CO.20120501.0083
WANG Qi, LIU Yun, WANG Li-jun. Design of InP-based quantum cascade laser with high power and short wavelength[J]. Chinese Optics, 2012, 5(1): 83-91. doi: 10.3788/CO.20120501.0083
Citation: WANG Qi, LIU Yun, WANG Li-jun. Design of InP-based quantum cascade laser with high power and short wavelength[J]. Chinese Optics, 2012, 5(1): 83-91. doi: 10.3788/CO.20120501.0083

InP基高功率短波长量子级联激光器设计

doi: 10.3788/CO.20120501.0083
基金项目: 

国家自然科学基金资助项目(No.10974012,No.61106047)

详细信息
  • 中图分类号: TN248.4

Design of InP-based quantum cascade laser with high power and short wavelength

  • 摘要: 阐述了InP基高功率短波长量子级联激光器(QCL)的设计原理和设计方案。从有源区设计模型出发,介绍了器件的理想和实际载流子传输路径,进而指出有源区设计的发展趋势和方法。根据器件的发展进程,综述了双声子共振设计,非共振抽取式设计,超强耦合设计,深阱设计,浅阱设计,短注入区设计等先进设计方案,这些设计方案使得QCL在低温下的电光转换效率在50%以上,最大室温连续输出功率超过3 W,而器件的特征温度T0和T1的最大值分别达到383 K和645 K。针对量子级联激光器的短波长高功率提供的先进设计方案扩大了QCL在民用与军用领域的应用前景,该设计方案亦可为其它波段量子级联激光器实现室温高功率的设计提供借鉴。
  • [1] FAIST J,CAPASSO F,SIVCO D L,et al.. Quantum cascade laser[J]. Science,1994,264:553. [2] GMACHL C,CAPASSO F,SIVCO D L,et al.. Recent progress in quantum cascade lasers and applications[J]. Rep. Prog. Phys.,2001,64:1553-1601. [3] MASSELINK W T,SEMTSIV M P. Quantum-cascade lasers with emission wavelength 3~5 μm[J]. SPIE,2010,7836:78360U. [4] LYAKH A,PFLVGL C,DIEHL L,et al.. 1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm[J]. Appl. Phys. Lett.,2008,92:111110. [5] LYAKH A,MAULINI R,PFL G L C,et al.. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach[J]. Appl. Phys. Lett.,2009,95:141113. [6] SLIVKEN S,BAI Y,GOKDEN B,et al.. Current status and potential of high power mid-infrared intersubband lasers[J]. SPIE,2010,7608:76080B. [7] EVANS A,DARVISH S R,SLIVKEN S,et al.. Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency[J]. Appl. Phys. Lett.,2007,91:071101. [9] LYAKH A,MAULINI R,TSEKOUN A,et al.. High-performance continuous-wave room temperature 4.0 μm quantum cascade lasers with single-facet optical emission exceeding 2 W[J]. Proc. of the National Academy of Sciences,USA,2010,107(44):18799-18802. [10] CAPASSO F. High-performance midinfrared quantum cascade Lasers[J]. Opt. Eng.,2010,49(11):111102. [11] TSEKOUN A,GO R,PUSHKARSKY M,et al.. Improved performance of quantum cascade lasers via manufacturable quality epitaxial side down mounting process utilizing aluminum nitride heat sinks[J]. SPIE,2006,6127:612702. [12] LIU P Q,HOFFMAN A J,ESCARRA M D,et al.. Highly power-efficient quantum cascade lasers[J]. Nature Photonics,2009,10.1038:95-98. [13] HURGIN K,et al.. Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers[J]. Appl. Phys. Lett.,2009,94:091101. [14] SHIN J C,SOUZA M D,LIU Z,et al.. Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers[J]. Appl. Phys. Lett.,2009,94:201103. [15] BAI Y,TSAO N S,SELCUK E,et al.. Highly temperature insensitive quantum cascade lasers[J]. Appl. Phys. Lett.,2010,97:251104. [16] BOTEZ D,SHIN J C,KUMAR S,et al.. Electron leakage and its suppression via deep-well structures in 4.5 to 5.0 μm emitting quantum cascade lasers[J]. Opt. Eng.,2010,49(11):111108. [17] BAI Y B,SLIVKEN S,KUBOYA S,et al.. Quantum cascade lasers that emit more light than heat[J]. Nature Photonics,2010,4:99-102. [18] FRANZ K J,LIU P Q,RAFTERY J J J,et al.. Short injector quantum cascade lasers[J]. IEEE, J. Quantum. Elect..,2010,46(5):591-600. [19] WANKE M C,CAPASSO F,GMACHL C,et al.. Injectorless quantum cascade lasers[J]. Appl. Phys. Lett.,2001,78:3950-3952. [20] KATZ S,FRIEDRICH A,BOEHM G,et al.. Continuous wave operation of injectorless quantum cascade lasers at low temperatures[J]. Appl. Phys. Lett.,2008,92:181103. [21] SIRTORI C,CAPASSO F,FAIST J,et al.. Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells[J]. Phys. Rev. B.,1994,50:8663-8674. [22] NELSON D F,MILLER R C,KLEINMANN D A. Band nonparabolicity effects in semiconductor quantum wells[J]. Phys. Rev. B.,1987,35:7770-7773. [23] VAN D E WALLE C G. Band lineups and deformation potentials in themodel-solid theory[J]. Phys. Rev. B.,1989,39:1871-1883. [24] ALARELLI M. Heterojunctions and Semiconductor Heterostucture[M]. Berlin:Springer-Verlag,1986. [25] FERREIRA R,BASTARD G. Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures[J]. Phys. Rev. B.,1989,40:1074-1086. [26] LIU H C,CAPASSO F. Intersubband Transitions in Quantum Wells:Physics and Device Applications II[M]. San Diego:Academic Press,2000. [27] BECK M,HOFSTETTER D,AELLEN T,et al.. Room temperature quantum cascade laser[J]. Science,2002,295:301-305. [28] RAZEGHI M. High performance InP based mid-IR quantum cascade lasers[J]. IEEE J. Sel. Top. Quantum Elect.,2009,15:941-951. [29] FAIST J. Wallplug efficiency of quantum cascade lasers:critical parameters and fundamental limits[J]. Appl. Phys. Lett.,2007,90:253512.
  • 加载中
计量
  • 文章访问数:  2602
  • HTML全文浏览量:  164
  • PDF下载量:  889
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-11
  • 修回日期:  2011-12-13
  • 刊出日期:  2012-02-10

目录

    /

    返回文章
    返回