留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面等离子体激元纳米激光器技术及应用研究进展

陈泳屹 佟存柱 秦莉 王立军 张金龙

陈泳屹, 佟存柱, 秦莉, 王立军, 张金龙. 表面等离子体激元纳米激光器技术及应用研究进展[J]. 中国光学, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453
引用本文: 陈泳屹, 佟存柱, 秦莉, 王立军, 张金龙. 表面等离子体激元纳米激光器技术及应用研究进展[J]. 中国光学, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453
CHEN Yong-yi, TONG Cun-zhu, QIN Li, WANG Li-jun, ZHANG Jin-long. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chinese Optics, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453
Citation: CHEN Yong-yi, TONG Cun-zhu, QIN Li, WANG Li-jun, ZHANG Jin-long. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chinese Optics, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453

表面等离子体激元纳米激光器技术及应用研究进展

doi: 10.3788/CO.20120505.0453
基金项目: 

国家自然科学基金面上资助项目(No.61076064,No.61176046);吉林省科技厅资助项目(No.201105026,No.20116011)

详细信息
    作者简介:

    陈泳屹(1986-),男,吉林长春人,博士研究生,主要从事纳米光学与表面等离子体激光器等方面的研究。 E-mail:cyy2283@126.com 张金龙(1975-),男,吉林市人,副研究员,主要从事光电器件研制与开发等方面的研究。 E-mail:pled3588@yahoo.com.cn

    陈泳屹(1986-),男,吉林长春人,博士研究生,主要从事纳米光学与表面等离子体激光器等方面的研究。 E-mail:cyy2283@126.com 张金龙(1975-),男,吉林市人,副研究员,主要从事光电器件研制与开发等方面的研究。 E-mail:pled3588@yahoo.com.cn

    通讯作者: 张金龙
  • 中图分类号: TN248.9;O439

Progress in surface plasmon polariton nano-laser technologies and applications

  • 摘要: 传统半导体激光器由于采用光学系统反馈而存在衍射极限,其腔长至少是其发射波长的一半,因此难以实现微小化。基于表面等离子体激元的纳米激光器可以实现深亚波长乃至纳米尺度的激光发射,而且现代微纳加工技术的逐步成熟,也为亚波长乃至纳米量级激光器的研制提供了成熟的技术条件。本文重点综述了国际上已成功实验验证的基于表面等离子体激元的纳米激光器的最新研究进展,综述了表面等离子体激元的基本原理,给出了若干种表面等离子体激元纳米激光器的结构和特点,指出该类激光器现存问题主要表现在激元损耗高及由此引起的制备工艺和电泵浦涉及的技术难题。文中最后展望了纳米激光器的应用和研究前景。
  • [1] SCHAWLOW A L,TOWNES C H. Infrared and optical masers[J]. Phy. Rev.,1958,112:1940-1949. [2] WANG Z B,JOSEPH N,LI L,et al.. A review of optical near-fields in particle/tip-assisted laser nanofabrication[J]. Mechanical Eng. Sci.,2010,224:1113-1125. [3] GUO W,WANG Z B,LI L,et al.. Near-field laser parallel nanofabrication of arbitrary-shaped patterns[J]. Appl. Phys. Lett.,2007,90:243101. [4] SCHULLER J A,BARNARD E S,CAI W SH,et al.. Plasmonics for extreme light concentration and manipulation[J]. Nature Mate.,2010,9:193-204. [5] BARNARD D K,BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics,2010,4:83-91. [6] ANKER J N,HALL W P,LYANDRES O,et al.. Biosensing with plasmonic nanosensors[J]. Nature Mater.,2008,7:442-453. [7] DIONNE J A,DIEST K,SWEATLOCK L A,et al.. Ametal-oxide-Si field effect plasmonic modulator[J]. Nano Lett.,2009,9:897-902. [8] ZIJLSTRA P,CHON J W M,GU M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature,2009,459:410-413. [9] CHALLENER W A,PENG CH B,ITAGI A V,et al.. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer[J]. Nature Photonics,2009,3:220-224. [10] 雷建国,刘天航,林景全,等. 表面等离子体激光的若干新应用[J]. 中国光学与应用光学,2010,3(5):432-439. LEI J G,LIU T H,LIN J Q,et al.. New applications of surface plasmon polaritons[J]. Chinese J. Opt. Appl. Opt.,2010,3(5):432-439.(in Chinese) [11] LIU JUAN,WANG Y T,XU L W,et al.. Contribution of surface plasmon polaritons to extraordinary optical transmission through metallic nanoslit[J]. Chinese J. Opt. Appl. Opt..,2010,3(1):33-37. [12] STIPE B C,STRAND T C,POON C C,et al.. Magnetic recording at 1: 5 Pb m-2 using an integrated plasmonic antenna[J]. Nature Photonics,2010,4:484-488. [13] BARNES W L,DEREUX A,EBBESEN T W S. Surface plasmon subwavelength optics[J]. Nature,2003,424:824-830. [14] BOZHEVOLNYI S I,VOLKOV V S,DEVAUX E,et al.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature,2006,440:508-511. [15] AKIMOV A V,MUKHERJEE A,YU C L,et al.. Generation of single optical plasmons in metallic nanowires coupled to quantum dots[J]. Nature,2007,450:402-406. [16] LIEBERG B,Nylander C,NYLANDER M I. Surface plasmon resonance for gas detection and biosensing[J]. Sensors and Actuators,1983,4:299-304. [17] ATWATER A H. The promise of plasmonics[J]. Sci. Am.,2007,296(4):56-63. [18] PAN L,PARK Y,XIONG Y,et al.. Maskless plasmonic lithography at 22 nm resolution[J]. Scientific Reports,2011,1:175 [19] BERGMAN D J,STOCKMAN M I. Surface plasmon amplification by stimulated emission of radiation:quantum generation of coherent surface plasmons in nanosystems[J]. Phys. Rev. Lett.,2003,90:027402 [20] MAISER S A. Plasmonics:Fundamentals and Aplications[M]. Berlin:Springer-verlag,2006. [21] BRONGERSMA M L,KIK P G. Surface Plasmon Nanophotonics[M]. Berlin:Springer-verlag,2007. [22] RAETHER H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M]. Berlin:Springer-verlag,1988. [23] 顾本源.表面等离子体激元亚波长光学原理和新颖效应[J]. 物理,2007,36(4): 280-287. GU B Y. Surface plasmon subwavelength optics:principles and novel effects[J]. Physics,2007,36(4):280-287.(in Chinese) [24] OULTON R F,PILE D F P,LIU Y,et al.. Scattering of surface plasmon polaritons at abrupt surface interfaces:implications for nanoscale cavities[J]. Phys. Rev. B,2007,76:035408. [25] OZBAY E. Plasmonics:merging photonics and electronics at nanoscale dimensions[J]. Science,2006,311:189-193. [26] CONWAY J A,SAHNI S,SZKOPEK T. Plasmonic interconnects versus conventional interconnects:a comparison of latency,crosstalk and energy costs[J]. Opt. Express,2007,15(8):4474-4484. [27] JACOB Z,SHALAEV V M. Plasmonics goes quantum[J]. Science,2011,334:463-464. [28] KRASAVIN A V,ZAYATS A V. Silicon-based plasmonic waveguides[J]. Opt. Express,2010,18:11791-11799 [29] CHANG S W,LIN T R,CHUANG S L. Theory of plasmonic fabry-perot nanolasers[J]. Opt. Express,2010,18(14):15039-15053. [30] CHANG S W,CHUANG S L. Fundamental formulation for plasmonic nanolasers[J]. IEEE J. Quantum Elect.,2009,45(8):1014-1023. [31] STOCKMAN M I. Spasers explained[J]. Nature Photonics,2008,2: 327-329. [32] FORD G W,WEBER W H. Electromagnetic interactions of molecules with metal surfaces[J]. Physics Reports(Review Section for Physics Letters),1984,113(4):195-287. [33] LEON I D,BERINI P. Amplification of long-range surface plasmons by a dipolar gain medium[J]. Nature Photonics,2010,4:382-387. [34] ZHELUDEV N I,PROSVIRNIN S L,PAPASIMAKIS N,et al.. Lasing spaser[J]. Nature Photonics,2008,2:351-354. [35] ZHANG S,GENOV D A,WANG Y,et al.. Plasmon-induced transparency in metamaterials[J]. Phys. Rev. Lett.,2008,101:047401. [36] LIU M Z,LEE T W,GRAY S K,et al.. Excitation of dark plasmons in metal nanoparticles by a localized emitter[J]. Phys. Rev. Lett.,2009,102:107401. [37] KOH A L,BAO K,KHAN I,et al.. Electron energy-loss spectroscopy(EELS) of surface plasmons in single silver nanoparticles and dimers:influence of beam damage and mapping of dark modes[J]. ACS Nano,2009,3:3015-3022. [38] CHU M W,MYROSHNYCHENKO V,CHEN C H,et al..Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam[J]. Nano Lett.,2009,9(1):399-404. [39] KLIMOV V,GUO G Y. Bright and dark plasmon modes in three nanocylinder cluster[J]. J. Phys. Chem. C,2010,114(51):22398-22405. [40] DONG Z G,LIU H,LI T,et al.. Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars[J]. Opt. Express,2010,18:18229-18234. [41] BIRIS C G,PANOIU N C. Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles:applications to near-infrared plasmonic sensing[J]. Nanotechnology,2011,22:235502. [42] FEDOTOV V A,ROSE M,PROSVIRNIN S L,et al.. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Phys. Rev. Lett.,2007,99:147401. [43] 杨欢,李飞,罗先刚,等. 基于复合纳米结构的局域表面等离子体光学传感器[J]. 光学与光电技术,2010,8(2):80-83. YANG H,LI F,LUO X G,et al.. Localized surface plasmomic biosensor based on composite nanostructures[J]. Optics & Optoelectronic Technology,2010,8(2):80-83.(in Chinese) [44] NOGINOV M A,ZHU G,BELGRAVE A M,et al.. Demonstration of a spaser-based nanolaser[J]. Nature,2009,460:1110-1112. [45] LAWANDY N M. Localized surface plasmon singularities in amplifying media[J]. Appl. Phys. Lett.,2004,85:5040. [46] LAWANDY N M. Interactions of charged particles on surfaces[J]. Appl. Phys. Lett.,2009,95:234101. [47] GHANNAM T. Dipole nano-laser: the effect of an external electric field[J]. J. Phys. B:At. Mol. Opt. Phys.,2010,43:155505-155510. [48] NOGINOV M A,ZHU G,BAHOURA M,et al.. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium[J]. Opt. Lett.,2006,31:3022-3024. [49] NOGINOV M A,ZHU G,BAHOURA M,et al.. The effect of gain and absorption on surface plasmons in metal nanoparticles[J]. Appl. Phys. B,2007,86:455-460. [50] OULTON R F,SORGER V J,ZENTGRAF T,et al.. Plasmon lasers at deep subwavelength scale[J]. Nature,2009,461:629-632. [51] OULTON R F,SORGER V J,GENOV D A,et al.. A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation[J]. Nature Photonics,2008,2:495-500. [52] LIN ZH. Modal properties of hybrid plasmonic waveguides for nanolaser applications[J]. IEEE Photonics Technol. Lett.,2010,22(8):535-537. [53] HILL M T,OEI Y S,SMALBRUGGE B,et al.. Lasing in metallic-coated nanocavities[J]. Nature Photonics,2007,1:589-594. [54] NEZHAD M P,SIMIC A,BONDAENKO O,et al.. Room-temperature subwavelength metallo-dielectric lasers[J]. Nature Photonics,2010,4:395-399. [55] KOLLER D M,HOHENAU A,DITLBACHER H,et al.. Organic plasmon-emitting diode[J]. Nature Photonics,2008,2:684-687. [56] WALTERS R J,LOON R V A VAN,BRUNETS I,et al.. A silicon-based electrical source of surface plasmon polaritons[J]. Nature Mater,2009,9:21-25. [57] WALTHER C,SCALARI G,AMANTI M I,et al.. Microcavity laser oscillating in a circuit-based resonator[J]. Science,2010,327(5972):1495-1497. [58] HILL M T,MARELL M,LEONG E S P,et al.. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides[J]. Opt.Express,2009,17(13):11107-11112. [59] AKAHANE Y,ASANO T,SONG B S,et al.. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature,2003,425:994. [60] SANVITTO D, DARAEI A, TAHRAOUI A,et al.. Observation of ultrahigh quality factor in a semiconductor microcavity[J]. Appl. Phys. Lett.,2005,86:191109. [61] MA R M,RUPERT F,OULTON R F,et al.. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection[J]. Nature Materials,2010,10:110-113. [62] ARAKAWA E T,WILLIAMS M W,HAMM R N,et al.. Effect of damping on surface plasmon dispersion[J]. Phys. Rev. Lett.,1973,3:1127-1129. [63] OKAMOTO T,H'DHILI F,KAWATA S. Towards plasmonic band gap laser[J]. Appl. Phys. Lett.,2004,85:3968. [64] WINTER G,WEDGE S,BARNES W L. Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?[J]. New J. Phys.,2006,8:125. [65] ALAM M Z,MEIER J,AITCHISON J S,et al.. Gain assisted surface plasmon polariton in quantum wells structures[J]. Opt. Express,2007,15:176-182. [66] de LEON I,BERINI P P. Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media[J]. Phys. Rev. B,2008,78:161401. [67] GENOV D A,AMBATI M,ZHANG X. Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach[J]. Phys. Rev. B,2008,77:115425.
  • [1] 宗楠, 胡蔚敏, 王志敏, 王小军, 张申金, 薄勇, 彭钦军, 许祖彦.  激光等离子体13.5 nm极紫外光刻光源进展 . 中国光学, 2020, 13(1): 28-42. doi: 10.3788/CO.20201301.0028
    [2] 杜悦宁, 陈超, 秦莉, 张星, 陈泳屹, 宁永强.  硅光子芯片外腔窄线宽半导体激光器 . 中国光学, 2019, 12(2): 229-241. doi: 10.3788/CO.20191202.0229
    [3] 马光辉, 张家斌, 张贺, 金亮, 王灌鑫, 徐英添.  金属等离子激元调控Fabry-Perot微腔谐振模式研究 . 中国光学, 2019, 12(3): 649-662. doi: 10.3788/CO.20191203.0649
    [4] 海一娜, 邹永刚, 田锟, 马晓辉, 王海珠, 范杰, 白云峰.  水平腔面发射半导体激光器研究进展 . 中国光学, 2017, 10(2): 194-206. doi: 10.3788/CO.20171002.0194
    [5] 朱业传, 苑伟政, 虞益挺.  表面等离子体平面金属透镜及其应用 . 中国光学, 2017, 10(2): 149-163. doi: 10.3788/CO.20171002.0149
    [6] 秦沛, 任玉, 刘丽炜, 胡思怡, 冯悦姝, 刘颖异, 岳婕.  金属纳米颗粒等离激元共振增强非线性介质谐波的发展现状 . 中国光学, 2016, 9(2): 213-225. doi: 10.3788/CO.20160902.0213
    [7] 杜江林, 高炳荣, 王海宇, 陈岐岱.  基于TiO2纳米粒子薄膜的低阈值随机激光器的动力学研究 . 中国光学, 2016, 9(2): 249-254. doi: 10.3788/CO.20160902.0249
    [8] 蔡浩原.  高分辨率表面等离子体显微镜综述 . 中国光学, 2014, 7(5): 691-700. doi: 10.3788/CO.20140705.0691
    [9] 苏彦勋, 柯沅锋, 蔡士良, 姚芊瑜, 徐嘉妘, 龚柏谚.  层层自组装金纳米粒子表面等离子体引发光电流应用于等离子体增感太阳能电池 . 中国光学, 2014, 7(2): 267-273. doi: 10.3788/CO.20140702.0267
    [10] 管小伟, 吴昊, 戴道锌.  硅基混合表面等离子体纳米光波导及集成器件 . 中国光学, 2014, 7(2): 181-195.
    [11] 窦银萍, 孙长凯, 林景全.  激光等离子体极紫外光刻光源 . 中国光学, 2013, 6(1): 20-33. doi: 10.3788/CO.20130601.0020
    [12] 王二伟, 鱼卫星, 王成, 卢振武.  用表面等离子体共振传感器检测纳米间距 . 中国光学, 2013, 6(2): 259-266. doi: 10.3788/CO.20130602.0259
    [13] 任玉, 李付锦, 董旭, 林景全.  飞秒激光等离子体通道传导能量特性的研究进展 . 中国光学, 2012, 5(2): 133-142. doi: 10.3788/CO.20120502.0133
    [14] BELEVTSEV A A, FIRSOV K N, KAZANTSEV S Yu, KONONOV I G, 张来明.  非链式化学HF(DF)激光器工作气体中电子分离的非稳定性和气体放电等离子体的自组织现象 . 中国光学, 2011, 4(1): 31-40.
    [15] 叶继飞, 洪延姬, 王广宇, 李南雷.  激光等离子体微推进技术的研究进展 . 中国光学, 2011, 4(4): 319-326.
    [16] 刘镜, 刘娟, 王涌天, 谢敬辉.  亚波长金属光栅的表面等离子体激元共振特性 . 中国光学, 2011, 4(4): 363-368.
    [17] 丛海兵, 宁永强, 张星, 王贞福, 王立军.  高功率980 nm垂直腔面发射激光器的亮度特性 . 中国光学, 2010, 3(6): 637-642.
    [18] YANG T, HO H P.  基于银膜孔阵列超强透射效应的相敏表面等离子体共振传感器的仿真研究 . 中国光学, 2010, 3(1): 57-63.
    [19] LIU Juan, WANG Yong-tian, XU Li-wei, XIE Jing-hui.  表面等离子体波在金属纳米缝超强透射中的作用 . 中国光学, 2010, 3(1): 33-37.
    [20] 雷建国, 刘天航, 林景全, 高勋, 厉宝增.  表面等离子体激元的若干新应用 . 中国光学, 2010, 3(5): 432-439.
  • 加载中
计量
  • 文章访问数:  2372
  • HTML全文浏览量:  61
  • PDF下载量:  1131
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-12
  • 修回日期:  2012-08-13
  • 刊出日期:  2012-10-10

表面等离子体激元纳米激光器技术及应用研究进展

doi: 10.3788/CO.20120505.0453
    基金项目:

    国家自然科学基金面上资助项目(No.61076064,No.61176046);吉林省科技厅资助项目(No.201105026,No.20116011)

    作者简介:

    陈泳屹(1986-),男,吉林长春人,博士研究生,主要从事纳米光学与表面等离子体激光器等方面的研究。 E-mail:cyy2283@126.com 张金龙(1975-),男,吉林市人,副研究员,主要从事光电器件研制与开发等方面的研究。 E-mail:pled3588@yahoo.com.cn

    陈泳屹(1986-),男,吉林长春人,博士研究生,主要从事纳米光学与表面等离子体激光器等方面的研究。 E-mail:cyy2283@126.com 张金龙(1975-),男,吉林市人,副研究员,主要从事光电器件研制与开发等方面的研究。 E-mail:pled3588@yahoo.com.cn

    通讯作者: 张金龙
  • 中图分类号: TN248.9;O439

摘要: 传统半导体激光器由于采用光学系统反馈而存在衍射极限,其腔长至少是其发射波长的一半,因此难以实现微小化。基于表面等离子体激元的纳米激光器可以实现深亚波长乃至纳米尺度的激光发射,而且现代微纳加工技术的逐步成熟,也为亚波长乃至纳米量级激光器的研制提供了成熟的技术条件。本文重点综述了国际上已成功实验验证的基于表面等离子体激元的纳米激光器的最新研究进展,综述了表面等离子体激元的基本原理,给出了若干种表面等离子体激元纳米激光器的结构和特点,指出该类激光器现存问题主要表现在激元损耗高及由此引起的制备工艺和电泵浦涉及的技术难题。文中最后展望了纳米激光器的应用和研究前景。

English Abstract

陈泳屹, 佟存柱, 秦莉, 王立军, 张金龙. 表面等离子体激元纳米激光器技术及应用研究进展[J]. 中国光学, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453
引用本文: 陈泳屹, 佟存柱, 秦莉, 王立军, 张金龙. 表面等离子体激元纳米激光器技术及应用研究进展[J]. 中国光学, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453
CHEN Yong-yi, TONG Cun-zhu, QIN Li, WANG Li-jun, ZHANG Jin-long. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chinese Optics, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453
Citation: CHEN Yong-yi, TONG Cun-zhu, QIN Li, WANG Li-jun, ZHANG Jin-long. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chinese Optics, 2012, 5(5): 453-463. doi: 10.3788/CO.20120505.0453
参考文献 (1)

目录

    /

    返回文章
    返回