留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转双棱镜光束指向控制技术综述

范大鹏 周远 鲁亚飞 黑墨 熊飞湍 李凯

范大鹏, 周远, 鲁亚飞, 黑墨, 熊飞湍, 李凯. 旋转双棱镜光束指向控制技术综述[J]. 中国光学, 2013, 6(2): 136-150. doi: 10.3788/CO.20130602.0136
引用本文: 范大鹏, 周远, 鲁亚飞, 黑墨, 熊飞湍, 李凯. 旋转双棱镜光束指向控制技术综述[J]. 中国光学, 2013, 6(2): 136-150. doi: 10.3788/CO.20130602.0136
FAN Da-peng, ZHOU Yuan, LU Ya-fei, HEI Mo, XIONG Fei-tuan, LI Kai. Overview of beam steering technology based on rotational double prisms[J]. Chinese Optics, 2013, 6(2): 136-150. doi: 10.3788/CO.20130602.0136
Citation: FAN Da-peng, ZHOU Yuan, LU Ya-fei, HEI Mo, XIONG Fei-tuan, LI Kai. Overview of beam steering technology based on rotational double prisms[J]. Chinese Optics, 2013, 6(2): 136-150. doi: 10.3788/CO.20130602.0136

旋转双棱镜光束指向控制技术综述

doi: 10.3788/CO.20130602.0136
基金项目: 

国家自然科学基金资助项目(No.51135009);湖南省教育厅科学研究基金资助项目(No.12C0473)

详细信息
    作者简介:

    范大鹏(1964—),男,河南周口人,教授,博士生导师,1991年于华中科技大学获得博士学位,主要从事数控技术、嵌入式系统以及精密光电跟踪平台的测控技术研究。E-mail:fdp@nudt.edu.cn;周 远(1976—),男,湖南浏阳人,博士后,讲师,2008年于中国科学院电工研究所获得博士学位,主要从事光束指向与高分辨率成像技术的研究。

    通讯作者: 范大鹏, E-mail:fdp@nudt.edu.cn
  • 中图分类号: O439;TH703

Overview of beam steering technology based on rotational double prisms

  • 摘要: 旋转双棱镜系统通过两棱镜的共轴独立旋转改变光的传播方向,可用于调整光束或视轴指向。与传统的两轴、三轴式光电平台相比,基于旋转双棱镜设计的光束或视轴调整装置具有精度高、结构紧凑、动态性能好等优点,已成为传统光电平台的有益补充。本文分析了双棱镜系统的光束指向调整机制;介绍了国内外相关基础研究的热点问题,主要涉及光束转向机制、光束扫描模式、棱镜回转控制以及棱镜引起的光束变形、成像色差、成像畸变的研究。文中描述了该项技术的应用进展,给出了利用该项技术开发的典型产品以及该项技术在激光光束指向调整和目标搜索、识别与跟踪成像方面的应用。最后,探讨了旋转棱镜在扫描模式、光束质量、成像色差与畸变、回转控制等方面面临的技术难题,并对其发展趋势进行了展望。
  • [1] DILLON T E,SCHUETZ C A,MARTIN R D,et al.. Nonmechanical beam steering using optical phased arrays[J]. SPIE,2011,8184:81840F. [2] 孙辉,郎小龙,李志强,等.动载体光电平台视轴稳定精度的检测[J].光学 精密工程,2011,19(9):2131-2137. SUN H,LANG X L,LI ZH Q,et al.. Measurement for LOS stabilization accuracy of electro-optical imaging system on moving carrier[J]. Opt. Precision Eng.,2011,19(9):2131-2137.(in Chinese) [3] 李焱,曹立华,王弟男.惯导平台下舰载光电搜索跟踪系统的控制[J].光学 精密工程,2011,19(5):1126-1133. LI Y,CAO L H,WANG D N. Controlling of shipborne optoelectronic searching and tracking system based on inertial navigation platform[J]. Opt. Precision Eng.,2011,19(5):1126-1133.(in Chinese) [4] CHEN C B. Beam steering and pointing with counter-rotating grisms[J]. SPIE,2007,6714:671409. [5] WINSOR R,BRAUNSTEIN M. Conformal beam steering apparatus for simultaneous manipulation of optical and radio frequency signals[J]. SPIE,2006,6215:62150G. [6] SCHWARZE C R,VAILLANCOURT R,CARLSON D,et al.. Risley-prism based compact laser beam steering for IRCM, laser communications, and laser radar[EB/OL].[2012-07-11].http://www.optra.com/images/TP-Compact-Beam-Steering.pdf. [7] ULANDER K. Two-axis beam steering mirror control system for precision pointing and tracking applications[D]. Sanluis Obispo,CA:Faculty of California Polytechnic State University,2006. [8] KIM B S,GIBSON S,TSAO T. Adaptive control of a tilt mirror for laser beam steering[C]//American Control Conference,2004. Proc. of the 2004,Boston,MA,USA,Jun.30-Jul.2,2004. [9] SCHWARZE C. A new look at risley prisms[J]. Photonics Spectra,2005,40(6):67-70. [10] LI A,JIANG X,SUN J,et al.. Laser coarse fine coupling scanning method by steering double prisms[J]. Appl. Opt.,2012,51(3):356-364. [11] SCHUNDLER E,CARLSON D,VAILLANCOURT R,et al.. Compact, wide field DRS explosive detector[J]. SPIE,2011,8018:80181O. [12] CLARK C S,GENTILE S. Flight miniature Risley prism mechanism[J]. SPIE,2009,7429:74290G. [13] II W C W,DIMARZIO C A. Dual-wedge scanning confocal reflectance microscope[J]. Optics Lett.,2007,32(15):2140-2142. [14] SANCHEZ M,GUTOW D. Control laws for a three-element Risley prism optical beam pointer[J]. SPIE,2006,6304:630403. [15] HARVEY J E. Geometrical optics and image science(OSE 5203):plane mirrors and prisms[EB/OL].[2012-07-11].http://imaging.creol.ucf.edu/OSE5203/02%20Lectures//.0%Infro.pdf. [16] MARSHALL G F. Risley prism scan patterns[J]. SPIE,1999,3787:74-86. [17] LI Y. Closed form analytical inverse solutions for Risley-prism-based beam steering systems in different configurations[J]. Appl. Opt.,2011,50(22):4302-4309. [18] YANG Y. Analytic solution of free space optical beam steering using risley prisms[J]. J. Lightwave Technol.,2008,26(21):3576-3583. [19] BOISSET G C,ROBERTSON B,HINTON H S. Design and construction of an active alignment demonstrator for a free-space optical interconnect[J]. Photonics Technology Lett.,1995,7(6):676-679. [20] LAVIGNE V,RICARD B. Fast Risley prisms camera steering system:calibration and image distortions correction through the use of a three-dimensional refraction model[J]. Optical Eng.,2007,46(4):43201. [21] OSTASZEWSKI M,HARFORD S,DOUGHTY N,et al.. Risley prism beam pointer[J]. SPIE,2006,6304:630406. [22] WOLFE W L,ZISSIS G J. Optical-mechanical Scanning Techniques and Devices[M]. Michigan,US:Environmental Research Institute of Michigan,1989. [23] JEON Y. Generalization of the first-order formula for analysis of scan patterns of Risley prisms[J]. Optical Eng.,2011,50(11):113002. [24] LI Y. Third-order theory of the Risley-prism-based beam steering system[J]. Appl. Opt.,2011,50(5):679-686. [25] ZEMAX D C. Optical Design Program User's Guide[M]. Tusson,AZ:Focus Software,Incorporated,2005. [26] GARCIA-TORALES G,STROJNIK M,PAEZ G. Risley prisms to control wave-front tilt and displacement in a vectorial shearing interferometer[J]. Appl. Opt.,2002,41(7):1380-1384. [27] SIROHI R S,KOTHIYAL M P. Double wedge plate shearing interferometer for collimation test[J]. Appl. Opt.,1987,26:4054-4055. [28] AMIRAULT C T,DIMARZIO C A. Precision pointing using a dual-wedge scanner[J]. Appl. Opt.,1985,24(9):1302-1308. [29] DEGNAN J J. Ray matrix approach for the real time control of SLR2000 optical elements[C]//Proc. of the 14th International Workshop on Laser Ranging,San Fernando,Spain,Jun.7-11,2004. [30] JENKINS F R,WHITE H E. Fundamentals of Optics Fourth Edition[M]. New York:McGraw-Hill Companies,Inc.,2001. [31] WOLFE W L. Introduction to Infrared System Design[M]. Bellingham:SPIE,Verlage,1996. [32] HORNG J,LI Y. Error sources and their impact on the performance of dual-wedge beam steering systems[J]. Appl. Opt.,2012,51(18):4168-4175. [33] SUN J,LIU L,YUN M,et al.. Double prisms for two-dimensional optical satellite relative-trajectory simulator[J]. SPIE,2004,5550:411-418. [34] GARCIA-TORALES G,FLORES J L,MUNOZ R X. High precision prism scanning system[J]. SPIE,2007,6422:64220X. [35] WEI L,LIREN L,JIANFENG S. Control loop analysis of the complex axis in satellite laser communications[J]. SPIE,2010,7814:781410. [36] SUN J,LIU L,YUN M,et al.. Distortion of beam shape by a rotating double-prism wide-angle laser beam scanner[J]. Optical Eng.,2006,45(4):43001-43004. [37] SASIAN J M. Aberrations from a prism and a grating[J]. Appl. Opt.,2000,39(1):34-39. [38] LACOURSIERE J,DOUCET M,CURATU E O,et al.. Large-deviation achromatic Risley prisms pointing systems[J]. SPIE,2002,4773:123-131. [39] CURATU E O,CHEVRETTE P C,ST-GERMAIN D. Rotating-prism scanning system to equip an NFOV camera lens[J]. SPIE,1999,3779:154-164. [40] BOS P J,GARCIA H,SERGAN V. Wide-angle achromatic prism beam steering for infrared countermeasures and imaging applications:solving the singularity problem in the two-prism design[J]. Optical Eng.,2007,46(11):113001. [41] DUNCAN B D,BOS P J,SERGAN V. Wide-angle achromatic prism beam steering for infrared countermeasure applications[J]. Optical Eng.,2003,42(4):1038-1047. [42] GIBSON J L,DUNCAN B D,BOS P,et al.. Wide angle beam steering for infrared countermeasures applications[J]. SPIE,2002,4723:100-307. [43] FLOREA C,SANGHERA J,AGGARWAL I. Broadband beam steering using chalcogenide-based Risley prisms[J]. Optical Eng.,2011,50(3):33001. [44] WEBER D C,TROLINGER J D,NICHOLS R G,et al.. Diffractively corrected Risley prism for infrared imaging[J]. SPIE,2000,4025:79-86. [45] SPARROLD S W. Beam steering optical arrangement using risley prisms with surface contours for aberration correction:US6344937B1[P].2002-2-5. [46] JACKSON J E. Conformal beam steering devices having a minimal volume and window area utilizing risley prisms and diffraction gratings[P]. 2007-2-1. [47] ROSELL F A. Prism scanner[J]. J. Opt. Soc. Am.,1960,50:521-526. [48] DAS S,OLSEN R,MEAGHER C,et al.. New approaches to directional antenna technologies for unmanned system communications[C]//Antennas and Propagation Socity International Symposium(APSURSI),2010,IEEE,Toronto,CA,Jul.11-17,2010. [49] RUPAR M,FREEMAN A,VOREES B,et al.. A Tactical Reachback Extended Communications(TREC) capability[C]//The 2010 Military Communications Conference,2010:255-260. [50] TAME B J,STUTZKE N A. Steerable Risley prism antennas with low side lobes in the Ka band[C]//Wireless Information Technology and Systems(ICWITS),2010 IEEE International Conference on Honolulu,HI,Aug.28-Sept.3,2010. [51] DEGNAN J,MCGARRY J,ZAGWODZKI T,et al.. Transmitter point-ahead using dual risley prisms:theory and experiment[C]//Proc. of the 16th International Workshop on Laser Ranging,Poznan,Poland,Oct.12-17,2008. [52] AFZAL R S,YU A,DALLAS J L. The Geoscience Laser Altimeter System(GLAS) laser transmitter[J]. IEEE J,Selected Topics In Quantum Electronics,2007,13(3):511-536. [53] HAKUN C,BUDINOFF J,BROWN G,et al.. A boresight adjustment mechanism for use on laser altimeters[C]//37th Aerospace Mechanisms Symposium. Johnson Space Center,Houston,US,May 19-21,2004. [54] LUAN Z,LIU L,WANG L,et al.. Large-optics white light interferometer for laser wavefront test:apparatus and application[J]. SPIE,2008,7091:70910Q. [55] WANG L,LIU L,LUAN Z,et al.. The mechanical design of the large-optics double-shearing interferometer for the test of the diffraction-limited wave front[J]. SPIE,2008,7091:70910S. [56] SUN J,LIU L,YUN M,et al.. The effect of the rotating double-prism wide-angle laser beam scanner on the beam shape[J]. Optik,2005,116:553-556. [57] LI A,LIU L,SUN J,et al.. Research on a scanner for tilting orthogonal double prisms[J]. Appl. Opt.,2006,45:8063-8069. [58] DIMARZIO C,KRAUSE M,RCHANDLER,et al.. Airborne lidar dual wedge scanner:eleventh international laser radar conference[C]//Eleventh International Laser Radar Conference,University of Wisconsin-Madison:NASA,Jun.21-25,1982. [59] DIMARZIO C,HARRIS C,BILBRO J W,et al.. Pulsed laser doppler measurements of wind shear[J]. Bull. Am. Meteorol. Soc.,1979,60:1061. [60] MARINO R M,DAVIS W R. Jigsaw:a foliage-penetrating 3D imaging laser radar system[J]. Lincoln Laboratory J.,2005,15(1):23-36. [61] DEGNAN J,MACHAN R,LEVENTHAL E,et al.. Inflight performance of a second generation,photon counting, 3D imaging lidar[J]. SPIE,2008,6950:695001. [62] CHEN C W. Optical device with a steerable light path:US,7813644B2[P].2010-10-12. [63] CHU C. Double Risley prism pairs for optical beam steering and alignment:US,20040057656[P].2004-3-25. [64] SNYDER J J. Single channel M X N optical fiber switch:US,6636664B2[P].2003-10-21. [65] CORMACK R H. 1XN Optical fiber switch:US,6597829B2[P].2003-7-22. [66] SWEATT W C. Optical switch using Risley prisms:US,6549700B1[P].2003-4-15. [67] 朱勇建,那景新,潘卫清,等.条纹周期动态可调的通用型干涉仪[J].光学 精密工程,2012,20(1):109-116. ZHU Y J,NA J X,PAN W Q,et al.. Universal interferometer based on dynamically-adjusted fringe periods[J]. Opt. Precision Eng.,2012,20(1):109-116.(in Chinese) [68] GARCIA-TORALES G,FLORES J L,ALVAREZ-BORREGO J. Alignment of vectorial shearing interferometer using a simple recognition algorithm[J]. SPIE,2008,7073:707321. [69] GARCIA-TORALES G,FLORES J L. Vectorial shearing interferometer with a high resolution phase shifter[J]. SPIE,2007,6723:672330. [70] PAEZ G,STROJNIK M. Versatility of the vectorial shearing interferometer[J]. SPIE,2002,4486:513-522. [71] ADAMS D J. Scanner/pointer apparatus having super-hemispherical coverage:US,7336407B1[P].2008-2-26. [72] SPARROLD S W. Missile seeker having a beam steering optical arrangement using Risley prisms:US,6343767B1[P].2002-2-5. [73] WINSOR R S. Security camera system and method of steering beams to alter a field of view:US,2009/0079824A1[P].2009-3-26. [74] LAVIGNE V,RICARD B. Step-stare image gathering for high-resolution targeting ADA472001[R]. U.S. Department of Commerce,National Technical Information Service,2005. [75] TAO X,CHO H,JANABI-SHARIFI F. Optical design of a variable view imaging system with the combination of a telecentric scanner and double wedge prisms[J]. Appl. Opt.,2010,49(2):239-246. [76] II W C W,GUERRERA S A. Efficient confocal microscopy with a dual-wedge scanner[J]. SPIE,2009,7184:71840M. [77] LU H D,CHEN G,TS'O D Y,et al.. A rapid topographic mapping and eye alignment method using optical imaging in Macaque visual cortex[J]. Neuro Image,2009,44:636-646. [78] STAHL J S,LEHMKUHLE M,WU K,et al.. Prospects for treating acquired pendular nystagmus with servo controlled optics[J]. Investigative Ophthalmology & Visual Science,2000,41(5):1084-1090. [79] DUMA V,ROLLANDA J P,PODOLEANUC A G. Perspectives of optical scanning in OCT [J]. SPIE,2010,7556:75560B. [80] KIM K,KIM D,MATSUMIYA K. Wide FOV wedge prism endoscope[C]. Proceedings of the 2005 IEEE-EMBS,27th Annual International Conference,Shanghai,China,Sept.1-4,2005. [81] SOUVESTRE F,HAFEZ M,REGNIER S. DMD-based multi-target laser tracking for motion capturing[J]. SPIE,2010,7596:75960B. [82] RANA H S. Lens technology incorporating internal pan/tilt and zoom[J]. SPIE,2008,7100:710001. [83] DOUGLASS G G,HINDSLEY R B,WORLEY C E. Speckle interferometry at the us naval observatory. I.[J]. The Astrophysical J. Supplement Series,1997,111(7):289-334. [84] LI Y,LI L,HUANG Y. Conformal optical design using counterrotating wedges and Zernike fringe sag surfaces[J]. SPIE,2008,7133:713340. [85] AYERS G J,CIAMPA M A,VRANOS N A. Holographic optical beam-steering[EB/OL].(2010-10-13)[2012-07-11].http://www.wpi.edu//Pups/E-project/Availabel/E-project-101310-153124/unrestricted/HOBS-Final-presentation.pdf.
  • [1] 赵猛, 颜昌翔, 吴从均.  激光通信地面测试终端间隔离度的仿真分析 . 中国光学, 2020, 13(3): 472-481. doi: 10.3788/CO.2019-0154
    [2] 王俊尧, 宋延嵩, 佟首峰, 姜会林, 董岩, 董科研, 常帅.  空间激光通信组网反射镜联动跟踪控制技术 . 中国光学, 2020, 13(3): 537-546. doi: 10.3788/CO.2019-0176
    [3] 谷茜茜, 崔占刚, 亓波.  基于离轴自由曲面的激光通信光学天线设计 . 中国光学, 2020, 13(3): 547-557. doi: 10.3788/CO.2019-0157
    [4] 高世杰, 吴佳彬, 刘永凯, 马爽, 牛艳君, 杨会生.  微小卫星激光通信系统发展现状与趋势 . 中国光学, 2020, 13(6): 1171-1181. doi: 10.37188/CO.2020-0033
    [5] 董全睿, 陈涛, 高世杰, 刘永凯, 张玉良.  星载激光通信技术研究进展 . 中国光学, 2019, 12(6): 1260-1270. doi: 10.3788/CO.20191206.1260
    [6] Jun LI, Xiu-hua YUAN, Ming-hao WANG.  Link performance evaluation for air-sea free-space optical communications . 中国光学, 2019, 12(2): 405-412. doi: 10.3788/CO.20191202.0405
    [7] 管海军, 刘云清, 张凤晶.  基于数字相位恢复算法的正交相移键控自由空间相干光通信系统 . 中国光学, 2019, 12(5): 1131-1138. doi: 10.3788/CO.20191205.1131
    [8] 许燚赟, 董科研, 安岩, 朱天元, 颜佳.  离焦对激光通信接收视场的影响分析 . 中国光学, 2018, 11(5): 822-831. doi: 10.3788/CO.20181105.0822
    [9] 张家齐, 张立中, 董科研, 王超, 李小明.  二次成像型库德式激光通信终端粗跟踪技术 . 中国光学, 2018, 11(4): 644-653. doi: 10.3788/CO.20181104.0644
    [10] 高铎瑞, 李天伦, 孙悦, 汪伟, 胡辉, 孟佳成, 郑运强, 谢小平.  空间激光通信最新进展与发展趋势 . 中国光学, 2018, 11(6): 901-913. doi: 10.3788/CO.20181106.0901
    [11] 杨成龙, 颜昌翔, 杨宇飞.  星间激光通信终端光学天线的隔离度 . 中国光学, 2017, 10(4): 462-468. doi: 10.3788/CO.20171001.0462
    [12] 张鲁薇, 王卫兵, 王锐, 王挺峰, 郭劲.  基于正解过程的Risley棱镜光束指向控制精度分析 . 中国光学, 2017, 10(4): 507-513. doi: 10.3788/CO.20171004.0507
    [13] 曾飞, 高世杰, 伞晓刚, 张鑫.  机载激光通信系统发展现状与趋势 . 中国光学, 2016, 9(1): 65-73. doi: 10.3788/CO.20160901.0065
    [14] 黄龙, 张文会.  潜望式激光通信瞄准机构误差计算 . 中国光学, 2015, 8(5): 840-846. doi: 10.3788/CO.20150805.0840
    [15] 杨秀清, 陈海燕.  光通信技术在物联网中的应用 . 中国光学, 2014, 7(6): 889-896. doi: 10.3788/CO.20140706.0889
    [16] 吴从均, 颜昌翔, 高志良.  空间激光通信发展概述 . 中国光学, 2013, 6(5): 670-680. doi: 10.3788/CO.20130605.0670
    [17] 张来线, 孙华燕, 樊桂花, 赵延仲, 郑勇辉.  猫眼逆向调制自由空间激光通信技术的研究进展 . 中国光学, 2013, 6(5): 681-691. doi: 10.3788/CO.20130605.0681
    [18] 付强, 姜会林, 王晓曼, 刘智, 佟首峰, 张立中.  空间激光通信研究现状及发展趋势 . 中国光学, 2012, 5(2): 116-125. doi: 10.3788/CO.20120502.0116
    [19] 赵丽丽, 王挺峰, 孙文涛, 郭劲.  无线激光通信协议的设计 . 中国光学, 2011, 4(6): 639-647.
    [20] 刘 杰, 陈 涛, 王建立, 董 磊.  无线激光通信在高速视频传输中的应用 . 中国光学, 2010, 3(3): 290-295.
  • 加载中
计量
  • 文章访问数:  1769
  • HTML全文浏览量:  110
  • PDF下载量:  853
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-16
  • 修回日期:  2013-01-15
  • 刊出日期:  2013-04-10

旋转双棱镜光束指向控制技术综述

doi: 10.3788/CO.20130602.0136
    基金项目:

    国家自然科学基金资助项目(No.51135009);湖南省教育厅科学研究基金资助项目(No.12C0473)

    作者简介:

    范大鹏(1964—),男,河南周口人,教授,博士生导师,1991年于华中科技大学获得博士学位,主要从事数控技术、嵌入式系统以及精密光电跟踪平台的测控技术研究。E-mail:fdp@nudt.edu.cn;周 远(1976—),男,湖南浏阳人,博士后,讲师,2008年于中国科学院电工研究所获得博士学位,主要从事光束指向与高分辨率成像技术的研究。

    通讯作者: 范大鹏, E-mail:fdp@nudt.edu.cn
  • 中图分类号: O439;TH703

摘要: 旋转双棱镜系统通过两棱镜的共轴独立旋转改变光的传播方向,可用于调整光束或视轴指向。与传统的两轴、三轴式光电平台相比,基于旋转双棱镜设计的光束或视轴调整装置具有精度高、结构紧凑、动态性能好等优点,已成为传统光电平台的有益补充。本文分析了双棱镜系统的光束指向调整机制;介绍了国内外相关基础研究的热点问题,主要涉及光束转向机制、光束扫描模式、棱镜回转控制以及棱镜引起的光束变形、成像色差、成像畸变的研究。文中描述了该项技术的应用进展,给出了利用该项技术开发的典型产品以及该项技术在激光光束指向调整和目标搜索、识别与跟踪成像方面的应用。最后,探讨了旋转棱镜在扫描模式、光束质量、成像色差与畸变、回转控制等方面面临的技术难题,并对其发展趋势进行了展望。

English Abstract

范大鹏, 周远, 鲁亚飞, 黑墨, 熊飞湍, 李凯. 旋转双棱镜光束指向控制技术综述[J]. 中国光学, 2013, 6(2): 136-150. doi: 10.3788/CO.20130602.0136
引用本文: 范大鹏, 周远, 鲁亚飞, 黑墨, 熊飞湍, 李凯. 旋转双棱镜光束指向控制技术综述[J]. 中国光学, 2013, 6(2): 136-150. doi: 10.3788/CO.20130602.0136
FAN Da-peng, ZHOU Yuan, LU Ya-fei, HEI Mo, XIONG Fei-tuan, LI Kai. Overview of beam steering technology based on rotational double prisms[J]. Chinese Optics, 2013, 6(2): 136-150. doi: 10.3788/CO.20130602.0136
Citation: FAN Da-peng, ZHOU Yuan, LU Ya-fei, HEI Mo, XIONG Fei-tuan, LI Kai. Overview of beam steering technology based on rotational double prisms[J]. Chinese Optics, 2013, 6(2): 136-150. doi: 10.3788/CO.20130602.0136
参考文献 (1)

目录

    /

    返回文章
    返回