留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

散射介质超衍射极限技术研究进展

杨虹 黄远辉 龚昌妹 吴腾飞 邵晓鹏

杨虹, 黄远辉, 龚昌妹, 吴腾飞, 邵晓鹏. 散射介质超衍射极限技术研究进展[J]. 中国光学, 2014, 7(1): 1-25. doi: 10.3788/CO.20140701.001
引用本文: 杨虹, 黄远辉, 龚昌妹, 吴腾飞, 邵晓鹏. 散射介质超衍射极限技术研究进展[J]. 中国光学, 2014, 7(1): 1-25. doi: 10.3788/CO.20140701.001
YANG Hong, HUANG Yuan-hui, GONG Chang-mei, WU Teng-fei, SHAO Xiao-peng. Advances on techniques of breaking diffraction limitation using scattering medium[J]. Chinese Optics, 2014, 7(1): 1-25. doi: 10.3788/CO.20140701.001
Citation: YANG Hong, HUANG Yuan-hui, GONG Chang-mei, WU Teng-fei, SHAO Xiao-peng. Advances on techniques of breaking diffraction limitation using scattering medium[J]. Chinese Optics, 2014, 7(1): 1-25. doi: 10.3788/CO.20140701.001

散射介质超衍射极限技术研究进展

doi: 10.3788/CO.20140701.001
基金项目: 

陕西省留学人员科技活动项目择优资助项目(No.68DP1204);优秀留学归国人员创新基金资助项目(No.6450051101)

详细信息
    作者简介:

    杨虹(1989—),女,云南保山人,硕士研究生,2012年于西安电子科技大学获得学士学位,主要从事超分辨率成像与计算成像技术方面的研究。E-mail:cindyyanghong@gmail.com

    通讯作者: 邵晓鹏,E-mail:xpshao@xidian.edu.cn
  • 中图分类号: O436.1

Advances on techniques of breaking diffraction limitation using scattering medium

  • 摘要: 综述了已有散射介质超衍射极限聚焦和成像技术的研究现状及进展。首先介绍了这一领域的研究背景及意义,以及已有超衍射极限成像技术的发展现状;然后给出了应用于超衍射极限成像的散射介质定义;其次分析了时间反演技术在声学、微波领域聚焦上的应用,介绍了时间反演法在光学领域超衍射极限聚焦应用中的实现方法,总结了散射介质加入到光学系统中的作用,分析了利用反馈控制调节和光学相位共轭方法进行散射介质超衍射极限聚焦方法的特点;讨论了基于空域和空频域传输矩阵测量的散射介质宽场成像方法及在该目的下的散射介质制备方法;最后给出了散射介质光学超衍射极限成像技术研究前景及展望。
  • [1] ABBE E. Beitrge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv für mikroskopische Anatomie, 1873, 9(1):413-418. [2] STODOLNA A, ROUZ E A, L PINE F, et al.. Hydrogen atoms under magnification:direct observation of the nodal structure of stark states[J]. Phys. Rev. Lett., 2013, 110(21):213001-5. [3] HANSSEN K Ø, SCHULER B, WILLIAMS A J, et al.. A combined atomic force microscopy and computational approach for the structural elucidation of breitfussin a and b: Highly modified halogenated dipeptides from thuiaria breitfussi[J]. Angewandte Chemie, 2012, 124(49):12404-12407. [4] BETZIG E, TRAUTMAN J K. Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit[J]. Science, 1992, 257(5067):189-195. [5] BOLTASSEVA A, ATWATER H A. Low-loss plasmonic metamaterials[J]. Science, 2011, 331(6015):290-291. [6] PENDRY J B. Negative refraction makes a perfect lens[J]. Phys. Rev. Lett., 2000, 85(18):3966-3969. [7] ZHANG X, LIU Z. Superlenses to overcome the diffraction limit[J]. Nature Materials, 2008, 7(6):435-441. [8] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy[J]. Optics Lett., 1994, 19(11):780-782. [9] BERNING S, WILLIG K I, STEFFENS H, et al.. Nanoscopy in a living mouse brain[J]. Science, 2012, 335(6068):551. [10] RITTWEGER E, HAN K Y, IRVINE S E, et al.. Sted microscopy reveals crystal colour centres with nanometric resolution[J]. Nat. Photon., 2009, 3(3):144-147. [11] JONES S A, SHIM S H, HE J, et al.. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods, 2011, 8(6):499-505. [12] RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(storm)[J]. Nature Methods, 2006, 3(10):793-796. [13] SUBACH F V, PATTERSON G H, MANLEY S, et al.. Photoactivatable mcherry for high-resolution two-color fluorescence microscopy[J]. Nat. Meth., 2009, 6(2):153-159. [14] BETZIG E, PATTERSON G H, SOUGRAT R, et al.. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793):1642-1645. [15] GUSTAFSSON M G L. Nonlinear structured-illumination microscopy:wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37):13081-13086. [16] BATES M, HUANG B, DEMPSEY G T, et al.. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845):1749. [17] HUANG B, BABCOCK H, ZHUANG X. Breaking the diffraction barrier:super-resolution imaging of cells[J]. Cell, 2010, 143(7):1047-1058. [18] ZHUANG X. Nano-imaging with storm[J]. Nature Photonics, 2009, 3(7):365. [19] 石顺祥, 王学恩, 刘劲松. 物理光学与应用光学[M].西安:西安电子科技大学出版社, 2008. SHI SH X, WANG X E, LIU J S. Physical Optics and Applied Optics[M]. Xi'an:Xidian University Press, 2008.(in Chinese) [20] GOODMAN J W. Introduction to Fourier Optics[M]. New York:McGRAW-HILL, 1996. [21] LAGENDIJK A, VAN TIGGELEN B, WIERSMA D S. Fifty years of anderson localization[J]. Phys. Today, 2009, 62(8):24-29. [22] WIERSMA D S, BARTOLINI P, LAGENDIJK A, et al.. Localization of light in a disordered medium[J]. Nature, 1997, 390(6661):671-673. [23] SKIPETROV S E. Langevin description of speckle dynamics in nonlinear disordered media[J]. Physical Review E, 2003, 67(1):016601. [24] GUAN Y, KATZ O, SMALL E, et al.. Polarization control of multiply scattered light through random media by wavefront shaping[J]. Optics Letters, 2012, 37(22):4663-4665. [25] TRIPATHI S, PAXMAN R, BIFANO T, et al. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media[J]. Optics Express, 2012, 20(14):16067-16076. [26] PAUDEL H P, STOCKBRIDGE C, MERTZ J, et al.. Focusing polychromatic light through strongly scattering media[J]. Opt. Express, 2013, 21(14):17299-17308. [27] KIM D, SEO K, CHOI W, et al.. Detection of evanescent waves using disordered nanowires[J]. Optics Communications, 2013, 297:1-6. [28] ISHIMARU A. Wave Propagation and Scattering in Random Media[M]. New York:John Wiley & Sons, 1999. [29] SHENG P. Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena[M]. Berlin Heidelberg:Springer, 2006. [30] TOURIN A, FINK M, DERODE A. Multiple scattering of sound[J]. Waves in Random Media, 2000, 10(4):R31-R60. [31] LEE P A, RAMAKRISHNAN T V. Disordered electronic systems[J]. Rev. Modern Physics, 1985, 57(2):287. [32] MARGERIN L, CAMPILLO M, VAN TIGGELEN B. Radiative transfer and diffusion of waves in a layered medium:new insight into coda q[J]. Geophysical J. International, 1998, 134(2):596-612. [33] FINK M. Acoustic time-reversal mirrors. Imaging of Complex Media with Acoustic and Seismic Waves[C]. Imaging of Complex Media with Acoustic and Seismic Waves, Berlin, Germany, 26 April-8 May, 1999, 2002:17-42. [34] FINK M. Time-reversed acoustics[J]. Sci. Am., 1999, 281(5):91-97. [35] LEROSEY G, DE ROSNY J, TOURIN A, et al.. Time reversal of electromagnetic waves[J]. Phys. Rev. Lett., 2004, 92(19):193904. [36] LEROSEY G, DE ROSNY J, TOURIN A, et al.. Focusing beyond the diffraction limit with far-field time reversal[J]. Science, 2007, 315(5815):1120-1122. [37] DE ROSNY J, FINK M. Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink[J]. Phys. Rev. Lett., 2002, 89(12):124301. [38] FINK M, TANTER M. Multiwave imaging and super resolution[J]. Phys. Today, 2010, 63:28. [39] PRADA C, FINK M. Eigenmodes of the time reversal operator:a solution to selective focusing in multiple-target media[J]. Wave Motion, 1994, 20(2):151-163. [40] GOUPILLAUD P L. An approach to inverse filtering of near-surface layer effects from seismic records[J]. Geophysics, 1961, 26(6): 54-760. [41] PAULRAJ A, NABAR R, GORE D. Introduction to Space-time WIRELESS COMmunications[M]. Cambridge, UK:Cambridge University Press, 2003. [42] POPOFF S M, LEROSEY G, FINK M, et al.. Controlling light through optical disordered media:transmission matrix approach[J]. New J. Phys., 2011, 13:123021. [43] LEMOULT F, FINK M, LEROSEY G. A polychromatic approach to far-field superlensing at visible wavelengths[J]. Nat. Commun., 2012, 3:889. [44] VELLEKOOP I M, MOSK A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 2007, 32(16):2309-2311. [45] YAQOOB Z, PSALTIS D, FELD M S, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nat. Photon., 2008, 2(2):110-115. [46] VELLEKOOP I M, LAGENDIJK A, MOSK A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 2010, 4(5):320-322. [47] 滕树云, 刘立人, 云茂金, 等. 提高能量密度的超衍射极限激光光束相位补偿技术[J]. 光学学报, 2005, 25(4):439-442. TENG SH Y, LIU L R, YUN M J, et al.. Phase compensative technology for the beam beyond the diffraction limits with high power[J]. Acta Optica Sinica, 2005, 25(4):439-442.(in Chinese) [48] FREUND I, ROSENBLUH M, FENG S. Memory effects in propagation of optical waves through disordered media[J]. Phys. Rev. Lett., 1988, 61(20):2328-2331. [49] POPOFF S M, LEROSEY G, CARMINATI R, et al. Measuring the transmission matrix in optics:an approach to the study and control of light propagation in disordered media[J]. Physical Review Lett., 2010, 104(10):100601-4: [50] VAN PUTTEN E, AKBULUT D, BERTOLOTTI J, et al.. Scattering lens resolves sub-100 nm structures with visible light[J]. Physical Review Letters, 2011, 106(19):193905. [51] AKBULUT D, HUISMAN T J, VAN PUTTEN E G, et al.. Focusing light through random photonic media by binary amplitude modulation[J]. Opt. Express, 2011, 19(5):4017-4029. [52] VELLEKOOP I M, AEGERTER C M. Scattered light fluorescence microscopy: Imaging through turbid layers[J]. Optics Letters, 2010, 35(8):1245-1247. [53] MOSK A. Imaging and focusing through turbid media[C]. OSA Technical Digest(online). 2013:JW1A.1. [54] LEROSEY G, FINK M. Acousto-optic imaging:merging the best of two worlds[J]. Nature Photonics, 2013, 7(4):265-267. [55] JUDKEWITZ B, WANG Y M, HORSTMEYER R, et al.. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light(trove)[J]. Nature Photonics, 2013, 7(4):300-305. [56] CUI M. Parallel wavefront optimization method for focusing light through random scattering media[J]. Optics Letters, 2011, 36(6):870-872. [57] CUI M. A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media[J]. Optics Express, 2011, 19(4):2989-2995. [58] CONKEY D B, CARAVACA-AGUIRRE A M, NIV E, et al.. High-speed phase-control of wavefronts with binary amplitude dmd for light control through dynamic turbid media[C]. SPIE MOEMS-MEMS, 2013:861701-6. [59] MCDOWELL E J, CUI M, VELLEKOOP I M, et al.. Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation[J]. J. Biomedical Optics, 2010, 15(2):025004. [60] YAQOOB Z, PSALTIS D, FELD M S, et al.. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2008, 2(2):110-115. [61] JANG M, SENTENAC A, YANG C. Optical phase conjugation(opc)-assisted isotropic focusing[J]. Optics Express, 2013, 21(7):8781-8792. [62] POPOFF S M, LEROSEY G, FINK M, et al.. Image transmission through an opaque material[J]. Nature Communications, 2010, 1(1):81. [63] MAIRE G, DRSEK F, GIRARD J, et al. Experimental demonstration of quantitative imaging beyond abbe's limit with optical diffraction tomography[J]. Phys. Rev. Lett., 2009, 102(21):213905. [64] MAIRE G, GIRARD J, DRSEK F, et al.. Experimental inversion of optical diffraction tomography data with a nonlinear algorithm in the multiple scattering regime[J]. J. Modern Optics, 2010, 57(9):746-755. [65] MONTALDO G, TANTER M, FINK M. Real time inverse filter focusing through iterative time reversal[J]. Acoustical Society of America, 2004, 115(2):768-775. [66] TANTER M, THOMAS J L, FINK M. Time reversal and the inverse filter[J]. J. Acoust. Soc. Am., 2000, 108:223-234. [67] MOSK A P, LAGENDIJK A, LEROSEY G, et al.. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 2012, 6(5):283-292. [68] CHOI Y, YANG T D, FANG-YEN C, et al.. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium[J]. Phys. Rev. Lett., 2011, 107(2):023902. [69] HULST H C, VAN DE HULST H. Light Scattering:By Small Particles[M]. Courier Dover Publications, 1957. [70] PUTTEN E G V. Focussing of light inside turbid media[C]. Enschede:University of Twente Master of Science, 2007. [71] VELLEKOOP I M, PUTTEN E G V, LAGENDIJK A, et al.. Demixing light paths inside disordered metamaterials[J]. Optics Express, 2008, 16(1):67-80. [72] GOODMAN J W. Statistical Optics[M]. New York:Wiley-Interscience, 1985. [73] GUMBEL E, GREENWOOD J A, DURAND D. The circular normal distribution:theory and tables[J]. J. American Statistical Association, 1953, 48(261):131-152. [74] 黄远辉. 光学超衍射极限成像中随机介质传输矩阵获取方法研究[D].西安:西安电子科技大学, 2013. HUANG Y H. Optical transmission matrix measurement of random scattering media for diffraction-limit breaking imaging[D]. Xi'an:Xidian University, 2013.(in Chinese) [75] CHOI W, FANG-YEN C, BADIZADEGAN K, et al.. Tomographic phase microscopy[J]. Nature Methods, 2007, 4(9):717-719. [76] TOURIN A, DERODE A, FINK M. Sensitivity to perturbations of a time-reversed acoustic wave in a multiple scattering medium[J]. Phys. Rev. Lett., 2001, 87(27):274301. [77] LEMOULT F, LEROSEY G, DE ROSNY J, et al.. Manipulating spatiotemporal degrees of freedom of waves in random media[J]. Phys. Rev. Lett., 2009, 103(17):173902. [78] AUBRY A, DERODE A. Singular value distribution of the propagation matrix in random scattering media[J]. Waves Random and Complex Media, 2010, 20(3):333-363. [79] MARCHENKO V A, PASTUR L A. Distribution of eigenvalues for some sets of random matrices[J]. Sbornik:Mathematics, 1967, 72(114):507-536. [80] WIGNER E P. Random matrices in physics[J]. Society Industrial and Appl. Mathematics Review, 1967, 9(1):1-23. [81] CHOI W, MOSK A P, PARK Q H, et al.. Transmission eigenchannels in a disordered medium[J]. Phys. Rev. B, 2011, 83(13):134207. [82] KIM M, CHOI Y, YOON C, et al.. Maximal energy transport through disordered media with the implementation of transmission eigenchannels[J]. Nature Photonics, 2012, 6(9):583-587. [83] KOHLGRAF-OWENS T, DOGARIU A. Finding the field transfer matrix of scattering media[J]. Optics Express, 2008, 16(17):13225-13232. [84] VAN PUTTEN E G, MOSK A P. Viewpoint:the information age in optics:measuring the transmission matrix[J]. Physics, 2010, 3:22.
  • [1] 张赛文, 林丹樱, 于斌, 冷潇泠, 张光富, 田野, 谭伟石.  基于压缩感知的三维单分子定位显微成像方法研究 . 中国光学, 2020, 13(5): 1-10. doi: 10.37188/CO.2020-0003
    [2] 蔡怀宇, 张玮茜, 陈晓冬, 刘珊珊, 韩晓艳.  眼科光学相干层析成像的图像处理方法 . 中国光学, 2019, 12(4): 731-740. doi: 10.3788/CO.20191204.0731
    [3] 李明磊, 吴谨, 白涛, 万磊, 李丹阳.  大随机相位误差下条带模式合成孔径激光雷达成像实验 . 中国光学, 2019, 12(1): 130-137. doi: 10.3788/CO.20191201.0130
    [4] 董磊, 卢振武, 刘欣悦.  3种主动合成孔径成像技术极限探测能力的分析与比较 . 中国光学, 2019, 12(1): 138-147. doi: 10.3788/CO.20191201.0138
    [5] 王雪飞, 卢振武, 王泰升, 鱼卫星.  超表面上表面等离激元波的光栅衍射行为研究 . 中国光学, 2018, 11(1): 60-73. doi: 10.3788/CO.20181101.0060
    [6] 刘志贺, 吴长锋.  超分辨率成像荧光探针材料应用进展 . 中国光学, 2018, 11(3): 344-362. doi: 10.3788/CO.20181103.0344
    [7] 张智敏, 匡翠方, 王子昂, 朱大钊, 陈友华, 李传康, 刘文杰, 刘旭.  双色荧光辐射差分超分辨显微系统研究 . 中国光学, 2018, 11(3): 329-336. doi: 10.3788/CO.20181103.0329
    [8] 龚梓博, 陆星, 施可彬, 龚旗煌.  光学频率梳非线性传输及其在相位噪声探测中的应用 . 中国光学, 2015, 8(1): 39-44. doi: 10.3788/CO.20150801.0039
    [9] 薛金来, 巩岩, 李佃蒙.  N.A.0.75平场复消色差显微物镜光学设计 . 中国光学, 2015, 8(6): 957-963. doi: 10.3788/CO.20150806.0957
    [10] 何远清, 刘永基, 翟奕.  成像角膜曲率计的光学设计 . 中国光学, 2014, 7(6): 956-961. doi: 10.3788/CO.20140706.0956
    [11] 张检发, 袁晓东, 秦石乔.  可调太赫兹与光学超材料 . 中国光学, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349
    [12] 张春雷, 向阳.  超光谱成像仪图像均匀性校正 . 中国光学, 2013, 6(4): 584-590. doi: 10.3788/CO.20130604.0584
    [13] 张海涛.  基于光学设计软件的相移点衍射干涉仪建模 . 中国光学, 2010, 3(6): 616-622.
    [14] 于杰.  用于相移点衍射干涉仪的加权最小二乘相位提取算法 . 中国光学, 2010, 3(6): 605-615.
    [15] 张益茬, 刘伟, 胡春晖.  空间超光谱成像仪前置光学系统的热光学特性 . 中国光学, 2010, 3(6): 572-579.
    [16] 张未来, 宋克菲, 王云磊, 潘利华, 马庆军, 汪龙祺, 刘海波.  固相时间分辨荧光免疫分析仪数据采集系统设计 . 中国光学, 2009, 2(4): 316-321.
    [17] 汪逸群, 颜昌翔, 苗春安.  星载高分辨率超光谱成像仪分光方式的选择 . 中国光学, 2009, 2(4): 304-308.
    [18] 乔彦峰, 刘 坤, 段相永, .  光学合成孔径成像技术及发展现状 . 中国光学, 2009, 2(3): 175-183.
    [19] 吕银环, 张涛, 童广辉, 崔维鑫.  基于衍射光学元件的红外弱目标探测系统设计 . 中国光学, 2009, 2(6): 543-549.
    [20] 李宁, 唐勇, 李玉瑶, 耿似玉.  工作距离可调的激光显微操纵器光学系统设计 . 中国光学, 2009, 2(6): 557-560.
  • 加载中
计量
  • 文章访问数:  750
  • HTML全文浏览量:  112
  • PDF下载量:  1148
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-21
  • 修回日期:  2013-12-17
  • 刊出日期:  2014-01-25

散射介质超衍射极限技术研究进展

doi: 10.3788/CO.20140701.001
    基金项目:

    陕西省留学人员科技活动项目择优资助项目(No.68DP1204);优秀留学归国人员创新基金资助项目(No.6450051101)

    作者简介:

    杨虹(1989—),女,云南保山人,硕士研究生,2012年于西安电子科技大学获得学士学位,主要从事超分辨率成像与计算成像技术方面的研究。E-mail:cindyyanghong@gmail.com

    通讯作者: 邵晓鹏,E-mail:xpshao@xidian.edu.cn
  • 中图分类号: O436.1

摘要: 综述了已有散射介质超衍射极限聚焦和成像技术的研究现状及进展。首先介绍了这一领域的研究背景及意义,以及已有超衍射极限成像技术的发展现状;然后给出了应用于超衍射极限成像的散射介质定义;其次分析了时间反演技术在声学、微波领域聚焦上的应用,介绍了时间反演法在光学领域超衍射极限聚焦应用中的实现方法,总结了散射介质加入到光学系统中的作用,分析了利用反馈控制调节和光学相位共轭方法进行散射介质超衍射极限聚焦方法的特点;讨论了基于空域和空频域传输矩阵测量的散射介质宽场成像方法及在该目的下的散射介质制备方法;最后给出了散射介质光学超衍射极限成像技术研究前景及展望。

English Abstract

杨虹, 黄远辉, 龚昌妹, 吴腾飞, 邵晓鹏. 散射介质超衍射极限技术研究进展[J]. 中国光学, 2014, 7(1): 1-25. doi: 10.3788/CO.20140701.001
引用本文: 杨虹, 黄远辉, 龚昌妹, 吴腾飞, 邵晓鹏. 散射介质超衍射极限技术研究进展[J]. 中国光学, 2014, 7(1): 1-25. doi: 10.3788/CO.20140701.001
YANG Hong, HUANG Yuan-hui, GONG Chang-mei, WU Teng-fei, SHAO Xiao-peng. Advances on techniques of breaking diffraction limitation using scattering medium[J]. Chinese Optics, 2014, 7(1): 1-25. doi: 10.3788/CO.20140701.001
Citation: YANG Hong, HUANG Yuan-hui, GONG Chang-mei, WU Teng-fei, SHAO Xiao-peng. Advances on techniques of breaking diffraction limitation using scattering medium[J]. Chinese Optics, 2014, 7(1): 1-25. doi: 10.3788/CO.20140701.001
参考文献 (1)

目录

    /

    返回文章
    返回