留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯基电极染料敏化太阳能电池的研究进展

谢世伟 肖啸 谭建军 刘愈 张志友 杜惊雷 高福华

谢世伟, 肖啸, 谭建军, 刘愈, 张志友, 杜惊雷, 高福华. 基于石墨烯基电极染料敏化太阳能电池的研究进展[J]. 中国光学(中英文), 2014, 7(1): 47-56. doi: 10.3788/CO.20140701.047
引用本文: 谢世伟, 肖啸, 谭建军, 刘愈, 张志友, 杜惊雷, 高福华. 基于石墨烯基电极染料敏化太阳能电池的研究进展[J]. 中国光学(中英文), 2014, 7(1): 47-56. doi: 10.3788/CO.20140701.047
XIE Shi-wei, XIAO Xiao, TAN Jian-jun, LIU Yu, ZHANG Zhi-you, DU Jing-lei, GAO Fu-hua. Recent progress in dye-sensitized solar cells using graphene-based electrodes[J]. Chinese Optics, 2014, 7(1): 47-56. doi: 10.3788/CO.20140701.047
Citation: XIE Shi-wei, XIAO Xiao, TAN Jian-jun, LIU Yu, ZHANG Zhi-you, DU Jing-lei, GAO Fu-hua. Recent progress in dye-sensitized solar cells using graphene-based electrodes[J]. Chinese Optics, 2014, 7(1): 47-56. doi: 10.3788/CO.20140701.047

基于石墨烯基电极染料敏化太阳能电池的研究进展

doi: 10.3788/CO.20140701.047
基金项目: 

国家自然科学基金资助项目(No.11374181)

详细信息
    作者简介:

    谢世伟(1976—),男,四川成都人,博士研究生,讲师,2000年于西南师范大学获得学士学位,2003年于四川大学获得硕士学位,主要从事信息光子学和太阳能电池方面的研究,E-mail:shiwei_x@hotmail.com

    通讯作者:

    高福华,E-mail:gaofuhua@scu.edu.cn

  • 中图分类号: TM914.4

Recent progress in dye-sensitized solar cells using graphene-based electrodes

  • 摘要: 对近几年石墨烯基电极染料敏化太阳能电池的研究成果进行了追踪,分析了多种改性石墨烯电极应用于染料敏化太阳能电池后能量转换效率变化的原因,深入研究了改善石墨烯对电解质的还原电催化反应活性物理机理,为解决该电池存在的问题理清了思路,对该方向未来的研究工作给出了建议,探索和制备新材料以进一步打破石墨烯的层间堆叠是提高该电池性能的关键。

     

  • [1] O'REGAN B, GRTZEL M. A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Lett. Nature, 1990, 353:737-740. [2] 李祥, 文尚胜, 姚日晖. 硅基有机太阳能电池光学性能分析[J]. 发光学报, 2012, 33(3):286-293. LI X, WEN SH SH, YAO R H. Analysis of optical performance for organic solar cell on Si substrate[J]. Chinese J. Luminescence, 2012, 33(3):286-293.(in Chinese) [3] YELLA A, LEE H W, TSAO H N, et al.. Porphyrin-sensitized solar cells with cobalt(Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency[J]. Science, 2011, 334(6056):629-634. [4] YANG X B, LIU G X, ALEXANDER A, et al.. Triple-mode single-transistor graphene amplifier and its applications[J]. ACS Nano, 2010, 4(10):5532-5538. [5] WANG Y, SHI Z Q, HUANG Y, et al.. Supercapacitor devices based on graphene materials[J]. J. Physical Chem. C, 2009, 113(30):13103-13107. [6] SUN S R, GAO L, LIU Y Q. Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation[J]. Appl. Phys. Lett., 2010, 96(8):083113. [7] PARK H, HOWDEN R M, BARR M C, et al.. Organic solar cells with graphene electrodes and vapor printed poly(3, 4-ethylenedioxythiophene) as the hole transporting layers[J]. Acs Nano, 2012, 6(7):6370-6377. [8] LEE S, YEO J S, JI Y, et al.. Flexible organic solar cells composed of P3HT∶ PCBM using chemically doped graphene electrodes[J]. Nanotechnology, 2012, 23(34):344013. [9] 郭颂, 杜晓刚, 刘晓云, 等. 氧化石墨烯作为共蒸镀掺杂材料在OLED中的应用[J]. 发光学报, 2013, 34(5): 595-599. GUO S, DU X G, LIU X Y, et al.. Graphene oxide as doping material for assembling OLEDs via thermal co-evaporation with NPB and Alq3[J]. Chinese J. Luminescence, 2013, 34(5):595-599.(in Chinese) [10] 冯德军, 黄文育, 纪鹏宇, 等. 基于石墨烯可饱和吸收体的掺铒光纤环形腔脉冲激光器[J]. 光学 精密工程, 2013, 21(5):1097-1101. FENG D J, HUANG W Y, JI P Y, et al.. Erbium-doped fiber ring cavity pulsed laser based on graphene saturable absorber[J]. Opt. Precision Eng., 2013, 21(5):1097-1101.(in Chinese) [11] 安楠, 白浪, 李小俊, 等. 室温下石墨烯的霍尔效应实验研究[J]. 发光学报, 2013, 34(1):45-48. AN N, BAI L, LI X J, et al. Experimental research on hall effect of graphene at room-temperature[J]. Chinese J. Luminescence, 2013, 34(1):45-48.(in Chinese) [12] LI Z Y, AKHTAR M S, KUK J H, et al.. Graphene application as a counter electrode material for dye-sensitized solar cell[J]. Mater. Lett., 2012, 86:96-99. [13] 李晓冬. 高性能染料敏化太阳能电池的制备与研究[D].上海:华东师范大学, 2011. LI X D. Preparation and investigation of high-performance dye-sensitized solar cells[D]. Shanghai:East China Normal University, 2011.(in Chinese) [14] ZHANG D W, LI X D, CHEN S, et al.. Fabrication of double-walled carbon nanotube counter electrodes for dye-sensitized solar sells[J]. J. Solid State Electrochem., 2010, 14(9):1541-1546. [15] 黄光胜, 阮晓莉, 竹怀君. 基于不同浓度铂对电极的染料敏化太阳能电池的性能研究[J]. 功能材料, 2011, 2(42):318-321. HUANG G SH, RUAN X L, ZHU H J. Performances characteristics of dye-sensitized solar cells based on counter electrodes with different Pt concentration[J]. Functional Mater., 2011, 2(42):318-321.(in Chinese) [16] 王桂强, 禚淑萍. 染料敏化太阳电池Pt_MC对电极的制备及性能[J]. 太阳能学报, 2012, 33(5):811-815. WANG G Q, ZHUO SH P. Preparation and characteristics of Pt/MC counter electrode for dye-sensitized solar cells[J]. Acta Energiae Solaris Sinica, 2012, 33(5):811-815.(in Chinese) [17] 马换梅, 田建华, 刘懿平. 染料敏化太阳能电池低铂对电极的制备和性能[J]. 化学工业与工程, 2011, 28(6):1-5. MA H M, TIAN J H, LIU Y P. Preparatioin and characterization of low Pt loading counter electrode for DSSCs[J]. Chem. Ind. Eng., 2011, 28(6):1-5.(in Chinese) [18] YU W W, ZHANG Q H, SHI G Y, et al.. Preparation of Pt-loaded TiO2 nanotubes/nanocrystals composite photocatalysts and their photocatalytic properties[J]. J. Inorganic Mater., 2011, 26(7):747-752. [19] XIAO Y M, WU J H, CHENG C X, et al.. Low temperature fabrication of high performance and transparent Pt counter electrodes for use in flexible dye-sensitized solar cells[J]. Chinese Sci. Bull., 2012, 57(18):2329-2334. [20] GONG F, ZHOU G, WANG ZH SH. Progress in research on counter electrode materials of dye-sensitized solar cells[J]. Chinese Sci. Bull.(Chinese Version), 2013, 58(4):294. [21] ZHU G, PAN L K, LU T, et al.. Electrophoretic deposition of reduced graphene-carbon nanotubes composite films as counter electrodes of dye-sensitized solar cells[J]. J. Mater. Chem., 2011, 21(38):14869-14875. [22] MEI X G, CHO S J, OUYANG J Y. High-performance dye-sensitized solar cells with gel-coated binder-free single-walled carbon nanotubefilms as counter electrode[J]. Nanotechnology, 2011, 21(39):395202. [23] ZHANG D W, LI X D, CHEN S, et al.. Fabrication of double-walled carbon nanotube counter electrodes for dye-sensitized solar sells[J]. J. Solid State Electrochem., 2010, 14(9):1541-1546. [24] YEN CH Y, LIN Y F, LIAO SH H, et al.. Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells[J]. Nanotechnology, 2008, 19(37):375305-375313. [25] CHANG L H, HSIEH C K, HSIAO M C, et al.. A graphene-multi-walled carbon nanotube hybrid supported on oxide as a counter electrode of dye-sensitized solar cells[J]. J. Power Sources, 2013, 222:518-525. [26] CHA S I, KOO B K, SEO S H, et al.. Pt-free transparent counter electrodes for dye-sensitized solar cells prepared from carbon nanotube micro-balls[J]. J. Mater. Chem., 2010, 20(4):659-662. [27] 张永昌, 林红, 李建保. 取向多壁碳纳米管的制备及其在染料敏化太阳能电池中的应用[J]. 硅酸盐学报, 2011, 39(10):1599-1602. ZHANG Y CH, LIN H, LI J B. Synthesis of oriented multi-walled carbon nanotubes and application in dye-sensitized solar cells[J]. J. Chinese Ceramic Society, 2011, 39(10):1599-1602.(in Chinese) [28] 冷利民, 梁春杰, 庞起. TiO2纳米管阵列电极染料敏化太阳能电池[J]. 功能材料, 2010, 41(12): 2174-2177. LENG L M, LIANG CH J, PANG Q. TiO2 nanotube arrays in dye-sensitized solar cells[J]. Functional Materials, 2010, 41(12):2174-2177.(in Chinese) [29] VEERAPPAN G, BOJAN K, RHEE S W. Sub-micrometer-sized graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces, 2011, 3(3):857-862. [30] CHEN J K, LI K X, LUO Y H, et al.. A flexible carbon counter electrode for dye-sensitized solar cells[J]. Carbon, 2009, 47(11):2704-2708. [31] HUANG H, ZHAO B, JIANG P, et al.. Flexible counter electrodes based on mesoporous carbon aerogel for high-performance dye-sensitized solar cells[J]. J. Phys. Chem. C, 2011, 115:22615 22621. [32] YEH M H, SUN C L, SU J S, et al.. A low-cost counter electrode of ITO glass coated with a graphene/Nafion(R) composite film for use in dye-sensitized solar cells[J]. Carbon, 2012, 50(11):4192-4202. [33] TSAI T H, CHIOU S C, CHEN S M. Enhancement of dye-sensitized solar cells by using graphene-TiO2 composites as photoelectrochemical working electrode[J]. International J. Electrochemical Science, 2011, 6(8):3333-3343. [34] ROY-MAYHEW J D, BOSCHLOO G, HAGFELDT A, et al.. Functionalized graphene sheets as a versatile replacement for platinum in dye-sensitized solar cells[J]. Acs Appl. Materials Interfaces, 2012, 4(5):2794-2800. [35] BAJPAI R, ROY S, KUMAR P, et al.. Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells[J]. Acs Appl. Materials Interfaces, 2011, 3(10):3884-3889. [36] LEE K S, LEE Y, L J Y, et al.. Flexible and platinum-free dye-sensitized solar cells with conducting-polymer-coated graphene counter electrodes[J]. Chemsuschem, 2012, 5(2):379-382. [37] AHMAD I, KHAN U, GUN'KO Y K. Graphene, carbon nanotube and ionic liquid mixtures: towards new quasi-solid state electrolytes for dye sensitised solar cells[J]. J. Mater. Chem., 2011, 21(42):16990-16996. [38] GUN J, KULKARNI S A, XIU W, et al.. Graphene oxide organogel electrolyte for quasi solid dye sensitized solar cells[J]. Electrochem. Communications, 2012, 19:108-110. [39] AKHTAR M S, KWON S, STADLER F J, et al.. Yang, High efficiency solid state dye sensitized solar cells with graphene-polyethylene oxide composite electrolytes[J]. Nanoscale, 2013, 5:5403 5411. [40] WAN L, WANG S M, WANG X B, et al.. Room-temperature fabrication of graphene films on variable substrates and its use as counter electrodes for dye-sensitized solar cells[J]. Solid State Sciences, 2011, 13(2):468-475. [41] YU D SH, NAGELLI E, DU F, et al.. Metal-free carbon nanomaterials become more active than metal catalysts and last longer[J]. J. Phys. Chem. Lett., 2010, 1(14):2165-2173. [42] SHAO Y Y, ZHANG SH, ENGELHARD M H, et al.. Nitrogen-doped graphene and its electrochemical applications[J]. J. Mater. Chem., 2010, 20(35):7491-7496. [43] YANG S B, FENG X L, WANG X C, et al.. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie-International Edition, 2011, 50(23):5339-5343. [44] WANG P, NABAE Y, OKAJIMA T, et al.. Kinetics of oxygen reduction reaction on carbon alloy catalysts[J]. Electrochem. Society, 2011, 2:242. [45] WANG G Q, FANG Y Y, LIN Y, et al.. Nitrogen-doped graphene as transparent counter electrode for efficient dye-sensitized solar cells[J]. Materials Research Bull., 2012, 47(12):4252-4256. [46] XUE Y H, LIU J, CHEN H, et al.. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells[J]. Angewandte Chemie-International Edition, 2012, 51(48): 12124-12127. [47] YEN M Y, HSIEN C K, TENG C C, et al.. Metal-free, nitrogen-doped graphene used as a novel catalyst for dye-sensitized solar cell counter electrodes[J]. Rsc Advances, 2012, 2(7):2725-2728. [48] ZHENG H Q, NEO C Y, MEI X G, et al.. Reduced graphene oxide films fabricated by gel coating and their application as platinum-free counter electrodes of highly efficient iodide/triiodide dye-sensitized solar cells[J]. J. Mater. Chem., 2012, 22(29):14465-14474. [49] NEO C Y, OUYANG J Y. Graphene oxide as auxiliary binder for TiO2 nanoparticle coating to more effectively fabricate dye-sensitized solar cells[J]. J. Power Sources, 2013, 222:161-168. [50] ZHANG D W, LI X D, LI H B, et al.. Graphene-based counter electrode for dye-sensitized solar cells[J]. Carbon, 2011, 49(15):5382-5388. [51] FAN J J, LIU S W, YU J G. Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films[J]. J. Materials Chem., 2012, 22(33):17027-17036. [52] HE Z M, GUAI G H, LIU J, et al.. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells[J]. Nanoscale, 2011, 3(11):4613-4616. [53] LI Y, WANG G F, PAN K, et al.. NaYF4∶ Er3+/Yb3+-graphene composites: preparation, upconversion luminescence, and application in dye-sensitized solar cells[J]. J. Mater. Chem., 2012, 22(38):20381-20386. [54] PARK J H, SEO S W, KIM J H, et al.. Improved efficiency of dye-sensitized solar cell using graphene-coated Al2O3-TiO2 nanocomposite photoanode[J]. Molecular Crystals and Liquid Crystals, 2011, 538:285-291. [55] YANG N L, ZHAI J, WANG D, et al.. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells[J]. Acs Nano, 2010, 4(2):887-894. [56] 向鹏. 染料敏化太阳能电池光阳极研究[D].武汉, 华中科技大学, 2012. XIANG P. The research on photo-anodes of dye-sensitized solar cells[D]. Wuhan:Huazhong University of Science and Technology, 2012.(in Chinese) [57] 田永书. 染料敏化太阳能电池光阳极的优化[D].重庆:重庆大学, 2012. TIAN Y SH. The optimization of photoanode of dye-sensitized solar cells[D]. Chongqing:Chongqing University, 2012.(in Chinese) [58] YEN M Y, HSIAO M C, LIAO S H, et al.. Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells[J]. Carbon, 2011, 49(11):3597-3606. [59] TANG Y B, LEE C S, XU J, et al.. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application[J]. ACS Nano, 2010, 4(6):3482-3488.
  • 加载中
计量
  • 文章访问数:  1545
  • HTML全文浏览量:  279
  • PDF下载量:  1053
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-14
  • 修回日期:  2013-12-17
  • 刊出日期:  2014-01-25

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!