留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

覆膜长周期光纤光栅在生化分析中的应用及研究进展

张帆 李秋顺 姚卫国 郑晖 马耀宏 董文飞

张帆, 李秋顺, 姚卫国, 郑晖, 马耀宏, 董文飞. 覆膜长周期光纤光栅在生化分析中的应用及研究进展[J]. 中国光学, 2014, 7(1): 57-67. doi: 10.3788/CO.20140701.057
引用本文: 张帆, 李秋顺, 姚卫国, 郑晖, 马耀宏, 董文飞. 覆膜长周期光纤光栅在生化分析中的应用及研究进展[J]. 中国光学, 2014, 7(1): 57-67. doi: 10.3788/CO.20140701.057
ZHANG Fan, LI Qiu-shun, YAO Wei-guo, ZHENG Hui, MA Yao-hong, DONG Wen-fei. Applications and progress of nanofilm-modified long period fiber grating in biological and chemical analysis[J]. Chinese Optics, 2014, 7(1): 57-67. doi: 10.3788/CO.20140701.057
Citation: ZHANG Fan, LI Qiu-shun, YAO Wei-guo, ZHENG Hui, MA Yao-hong, DONG Wen-fei. Applications and progress of nanofilm-modified long period fiber grating in biological and chemical analysis[J]. Chinese Optics, 2014, 7(1): 57-67. doi: 10.3788/CO.20140701.057

覆膜长周期光纤光栅在生化分析中的应用及研究进展

doi: 10.3788/CO.20140701.057
基金项目: 

国家自然科学基金资助项目(No.91123029,No.61077066);国家高技术研究发展计划(863计划)资助项目(No.2012AA063302);山东省自然科学基金资助项目(No.ZR2012CM029);山东省科学院科技发展基金资助项目(科技合字(2010)第4号)

详细信息
    作者简介:

    张帆(1986—),女,硕士研究生,黑龙江齐齐哈尔人,2009年于吉林大学获得学士学位,主要从事生物传感器等方面的研究。E-mail:zhangfan555520@163.com

    通讯作者: 姚卫国,E-mail:yaoweiguo1972@gmail.com
  • 中图分类号: TN253;TB383;TN929.11;O439

Applications and progress of nanofilm-modified long period fiber grating in biological and chemical analysis

  • 摘要: 总结了纳米薄膜修饰的长周期光纤光栅在折射率生物传感器方面的研究进展,重点介绍了纳米薄膜对长周期光纤光栅折射率传感性能的影响,详细阐述了覆膜长周期光纤光栅在生化分析检测领域的应用,并对其在折射率传感方面的应用前景作了展望。
  • [1] VENGSARKAR A M, LEMAIR P J, JUDKINS J B, et al.. Long-period fiber gratings as band-rejection filters[J]. Lightwave Technology J., 1996, 14(1):58-65. [2] CHIANG K S, LIU Q. Long-period grating devices for application in optical communication[C]. Proc. 5th Int. Conf. Opt. Commun. Netw. 2nd Int. Symp. Adv. Trends Fiber Opt. Appl.(ICOCN/ATFO). 2006. 128-133. [3] DEPARIS O, KIYAN R, POTTIEZ O, et al.. Bandpass filters based on π-shifted long-period fiber gratings for actively mode-locked erbium fiber lasers[J]. Optics Letters, 2001, 26(16):1239-1241. [4] 苗飞, 张玲, 冯德军, 等. 应用800 nm飞秒激光制备长周期光纤光栅[J]. 光学 精密工程, 2012, (4):685-691. MIAO F, ZHANG L, FENG D J, et al.. Inscription of long period fiber gratings using 800 nm femtosecond laser[J]. Opt. Precision Eng., 2012, (4):685-691.(in Chinese) [5] BHATIA V, VENGSARKAR A M. Optical fiber long-period grating sensors[J]. Opt. Lett., 1996, 21(9):692-694. [6] 王义平, 饶云江, 胡爱姿, 等. 长周期光纤光栅扭曲传感器[J]. 光学学报, 2002, 22(9):1096-1099. WANG Y P, RAO Y J, HU A Z, et al.. A novel long-period fiber grating torsion sensor[J]. Acta Optica Sinica, 2002, 22(9):1096-1099.(in Chinese) [7] 饶云江, 王久玲, 朱涛, 等. 基于扭曲长周期光纤光栅的高灵敏度压力传感器[J]. 光子学报, 2007, 36(3):487-491. RAO Y J, WANG J L, ZHU T, et al.. A high sensitivity pressure sensor based on twisted long-period fiber grating[J]. Acta Photonica Sinica, 2007, 36(3):487-491.(in Chinese) [8] 赵明富, 韩汐, 罗彬彬, 等. 长周期光纤光栅的折射率梯度响应特性[J]. 光学 精密工程, 2013, 21(2):316-322. ZHAO M F, HAN X, LUO B B, et al.. Response characteristics of refractive-index gradient based on long-period fiber gratings[J]. Opt. Precision Eng., 2013, 21(2):316-322.(in Chinese) [9] KHALIQ S, JAMES S W, TATAM R P. Enhanced sensitivity fibre optic long period grating temperature sensor[J]. Measurement Science and Technology, 2002, 13(5):792. [10] REES N D, JAMES S W, TATAM R P, et al.. Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays[J]. Opt. Lett., 2002, 27(9):686-688. [11] WANG Z, HEFLIN J, STOLEN R H, et al.. Highly sensitive optical response of optical fiber long period gratings to nanometer-thick ionic self-assembled multilayers[J]. Appl. Physics Lett., 2005, 86(22):223104-223104-3. [12] WANG Z, HEFLIN J R, STOLEN R H, et al.. Analysis of optical response of long period fiber gratings to nm-thick thin-film coatings[J]. Opt. Express, 2005, 13(8):2808-2813. [13] DEL VILLAR I, ACHAERANDIO M, MATIAS I R, et al.. Deposition of overlays by electrostatic self-assembly in long-period fiber gratings[J]. Opt. Lett., 2005, 30(7):720-722. [14] DEL VILLAR I, MATIAS I, ARREGUI F, et al.. Optimization of sensitivity in long period fiber gratings with overlay deposition[J]. Optics Express, 2005, 13(1):56-69. [15] DEL VILLAR I, MATIAS I R, ARREGUI F J, et al.. Influence on cladding mode distribution of overlay deposition on long-period fiber gratings[J]. JOSA A, 2006, 23(3):651-658. [16] CUSANO A, PILLA P, CONTESSA L, et al.. High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water[J]. Appl. Physics Lett., 2005, 87(23):234105-234105-3. [17] DAVIES E, VⅡTALA R, SALOMAKI M, et al.. Sol gel derived coating applied to long-period gratings for enhanced refractive index sensing properties[J]. J. Optics A:Pure and Appl. Optics, 2009, 11(1):015501. [18] LI Q, ZHANG X, YU Y S, et al.. Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers[J]. Reactive and Functional Polymers, 2011, 71(3):335-339. [19] DELISA M P, ZHANG Z, SHILOACH M, et al.. Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor[J]. Anal. Chem., 2000, 72(13):2895-900. [20] SHIBRU H, ZHANG Y, COOPER K L, et al.. Optimization of layer-by-layer electrostatic self-assembly processing parameters for optical biosensing[J]. Optical Eng., 2006, 45(2):024401-024401-6. [21] KIM D, ZHANG Y, COOPER K L, et al.. Fibre-optic interferometric immuno-sensor using long period grating[J]. Electronics Lett., 2006, 42(6):324-325. [22] CHIAVAIOLI F, TRONO C, GIANNETTI A, et al.. Characterisation of a label-free biosensor based on long period grating[J]. J. Biophotonics, 2012.DOI:10.1002/jbio.201200135 [23] PILLA P, MALACHOVSKA V, BORRIELLO A, et al.. Transition mode long period grating biosensor with functional multilayer coatings[J]. Optics Express, 2011, 19(2):512-526. [24] PILLA P, MANZILLO P F, MALACHOVSKA V, et al.. Development of a platform for biochemical sensing based on overlayered Long Period Gratings working in transition[C].Proceedings of Sensor, 2009IEEE, Christchurch, New Zealand, Oct. 25-28, 2009:361-366. [25] PILLA P, MANZILLO P F, MALACHOVSKA V, et al.. Long period grating working in transition mode as promising technological platform for label-free biosensing[J]. Optics Express, 2009, 17(22):20039-20050. [26] WANG Z Y, HEFLIN J R, KEVIN VAN COTT, et al.. Biosensors employing ionic self-assembled multilayers adsorbed on long-period fiber gratings[J]. Sens. Actuators, B, 2009, 139:618-623. [27] CHEN X, ZHANG L, ZHOU K, et al.. Real-time detection of DNA interactions with long-period fiber-grating-based biosensor[J]. Opt. Lett., 2007, 32(17):2541-3. [28] JAN H S, PARK K N, KIM J P, et al.. Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface[J]. Opt. Express, 2009, 17:3855-3860. [29] SMIETANA M, BOCK W J, MIKULIC P, et al.. Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings[J]. Optics Express, 2011, 19(9):7971-7978. [30] TRIPATHI S M, BOCK W J, MIKULIC P, et al.. Long period grating based biosensor for the detection of Escherichia coli bacteria[J]. Biosensors and Bioelectronics, 2012, 35:308-312. [31] TANG J L, WANG J N. Chemical sensing sensitivity of long-period grating sensor enhanced by colloidal gold nanoparticles[J]. Sensors, 2008, 8(1):171-184. [32] TANG J L, CHENG S F, HSU W T, et al.. Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating[J]. Sensors and Actuators B:Chemical, 2006, 119(1):105-109. [33] PILLA P, IADICICCO A, CONTESSA L, et al.. Optical chemo-sensor based on long period gratings coated with δ form syndiotactic polystyrene[J]. IEEE, 2005, 17(8):1713-1715. [34] YANG R Z, DONG W F, MENG X, et al.. Nanoporous TiO2/Polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes[J]. Langmuir, 2012, 28(23):8814-8821. [35] PLETT K. Development and characterization of polysiloxane polymer films for use in optical sensor technology[D]. Kinston:Queen's University, 2008. [36] KEITH J, PUCKETT S, GE PACEY. Investigation of the fundamental behavior of long-period grating sensors[J]. Talanta, 2003, 61(4):417-421. [37] KEITH J, HESS L C, SPENDEL W C, et al.. The investigation of the behavior of a long period grating sensor with a copper sensitive coating fabricated by layer-by-layer electrostatic adsorption[J]. Talanta, 2006, 70(4):818-822. [38] CORRES J M, DEL I, MATIAS I R, et al.. Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly[J]. Optics Letters, 2007, 32(1):29-31. [39] CORRES J M, MATIAS I R, DEL V I, et al.. Design of pH sensors in long-period fiber gratings using polymeric nanocoatings[J]. Sensors J., IEEE, 2007, 7(3):455-463. [40] PUCKETT S D, PACEY G E. Detection of water in jet fuel using layer-by-layer thin film coated long period grating sensor[J]. Talanta, 2009, 78(1):300-304. [41] TAN K M, TAY C M, TJIN S C, et al.. High relative humidity measurements using gelatin coated long-period grating sensors[J]. Sensors and Actuators B:Chemical, 2005, 110(2):335-341. [42] LIU Y, WANG L, ZHANG M, et al.. Long-period grating relative humidity sensor with hydrogel coating[J]. IEEE, 2007, 19(12):880-882. [43] CORRES J M, DEL VILLAR I, MATIAS I R, et al.. Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors[J]. IEEE, 2008, 7(4):394-400 [44] VENUGOPALAN T, SUN T, KTV GRATTAN. Long period grating-based humidity sensor for potential structural health monitoring[J]. Sensors and Actuators A:Physical, 2008, 148(1):57-62. [45] VIEGAS D, GOICOECHEA J, SANTOS J L, et al.. Sensitivity improvement of a humidity sensor based on silica nanospheres on a long-period fiber grating[J]. Sensors, 2009, 9(1):519-527. [46] VIEGAS D, HERNAEZ M, GOICOECHEA J, et al.. Simultaneous measurement of humidity and temperature based on an SiO2 -nanospheres film deposited on a long-period grating in-line with a fiber Bragg grating[J]. IEEE, 2011, 11(1):162-166. [47] CAUCHETEUR C, DEBLIQUY M, LAHEM D, et al.. Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air[J]. Optics Express, 2008, 16(21):16854-16859. [48] WEI X, WEI T, XIAO H, et al.. Nano-structured pd-long period fiber gratings integrated optical sensor for hydrogen detection[J]. Sensors and Actuators B:Chemical, 2008, 134(2):687-693. [49] TANG X, REMMEL K, LAN X, et al.. Perovskite-type oxide thin film integrated fiber optic sensor for high-temperature hydrogen measurement[J]. Anal. Chem., 2009, 81(18):7844-7848. [50] LACQUET B M, SWART P L, AMEER G. Long-period grating with sol-gel coating for CO2 detection[C]. Proceeding of Society of Photo-Optical Instrumentation Engineers(SPIE) Conference Series, Santander, Spain, June 09, 2004. 287-290. [51] KUMAR P S, SCARIA A V, VALLABHAN C P, et al.. Long-period grating in multimode fiber for ammonia gas detection[J]. SPIE, 2003:331-335. [52] YONGA P, SUN M. Research on the NO gas-sensitive effect of long-period fiber gratings coated with film[J]. SPIE, 2008:662406-1. [53] GU Z, XU Y, GAO K. Optical fiber long-period grating with solgel coating for gas sensor[J]. Opt. Lett., 2006, 31(16):2405-2407. [54] GU Z, XU Y. Design optimization of a long-period fiber grating with sol gel coating for a gas sensor[J]. Measurement Science and Technology, 2007, 18(11):3530. [55] ZHANG J, TANG X, DONG J, et al.. Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical[J]. Opt Express, 2008, 16(11):8317-8323. [56] ZHANG J, TANG X, DONG J, et al.. Zeolite thin film-coated long period fiber grating sensor for measuring trace organic vapors[J]. Sensors and Actuators B:Chemical, 2009, 135(2):420-425. [57] TANG X, PROVENZANO J, XU Z, et al.. Acidic ZSM-5 zeolite-coated long period fiber grating for optical sensing of ammonia[J]. J. Mater. Chem., 2011, 21(1):181-186. [58] TANG X, TANG Z, KIM S J, et al.. Modified ZSM-5 zeolite film-integrated fiber optic sensors for ammonia detection[J].SPIE, 2009. 2009, 7321:73120C-73120C-8. [59] TOPLISS S M, JAMES S W, DAVIS F, et al.. Optical fibre long period grating based selective vapour sensing of volatile organic compounds[J]. Sensors and Actuators B:Chemical, 2010, 143(2):629-634. [60] 李明宇, 薛懿, 罗根, 等. 平面光波导生物传感器微流通道的不可逆封合[J]. 中国光学, 2013, 6(1):103-110. LI M Y, XUE Y, LUO G, et al. Irreversible adherence of micro-fluidic channel of bio-sensor on slab optical waveguide[J]. Chinese Optics, 2013, 6(1):103-110.(in Chinese) [61] 周城. 基于银纳米线的类熊猫型微结构光纤传感器[J]. 发光学报, 2012, 33(10):1120-1126. ZHOU CH. Research of a near-panda micro-structured optical fiber sensor based on silver nanowires[J]. Chinese J. Luminescence, 2012, 33(10):1120-1126. (in Chinese)
  • [1] 明昕宇, 国旗, 薛兆康, 潘学鹏, 陈超, 于永森.  飞秒激光刻写低温度灵敏度的细芯长周期光栅 . 中国光学, 2020, 13(4): 737-744. doi: 10.37188/CO.2020-0015
    [2] 朱雨雨, 郗亚茹, 张亚妮, 江鹏, 薛璐, 许强.  长周期光纤光栅光谱特性仿真研究 . 中国光学, 2020, 13(3): 451-458. doi: 10.3788/CO.2019-0152
    [3] 柴国志, 黄亮, 乔亮, 张冠茂.  星上剩磁对惯性传感器的影响 . 中国光学, 2019, 12(3): 515-525. doi: 10.3788/CO.20191203.0515
    [4] 祝祥, 邵双运, 宋志军.  基于线结构光传感器的轨道板几何形貌检测方法 . 中国光学, 2018, 11(5): 841-850. doi: 10.3788/CO.20181105.0841
    [5] 史健松, 于源华, 王美娇, 吴再辉, 石鑫, 张昊, 宫平, 嵇晓强.  光纤生物传感器在HER3抗体药物定量检测中的应用 . 中国光学, 2018, 11(3): 503-512. doi: 10.3788/CO.20181103.0503
    [6] 敬世美, 张轩宇, 梁居发, 陈超, 郑钟铭, 于永森.  飞秒激光刻写的超短光纤布拉格光栅及其传感特性 . 中国光学, 2017, 10(4): 449-454. doi: 10.3788/CO.20171004.0449
    [7] 李秋顺, 向栋, 孟庆军, 杨俊慧, 史建国, 董文飞.  单端面透射模式长周期光栅的设计和测试 . 中国光学, 2017, 10(6): 783-789. doi: 10.3788/CO.20171006.0783
    [8] 李长胜, 王伟岐.  基于电致发光效应的光学电压传感器 . 中国光学, 2016, 9(1): 30-40. doi: 10.3788/CO.20160901.0030
    [9] 杜江林, 高炳荣, 王海宇, 陈岐岱.  基于TiO2纳米粒子薄膜的低阈值随机激光器的动力学研究 . 中国光学, 2016, 9(2): 249-254. doi: 10.3788/CO.20160902.0249
    [10] 张平, 张小栋, 董晓妮.  双圈同轴光纤传感器在润滑油介质中的输出特性 . 中国光学, 2015, 8(3): 439-446. doi: 10.3788/CO.20150803.0439
    [11] 徐宁, 戴明.  分布式光纤温度压力传感器设计 . 中国光学, 2015, 8(4): 629-635. doi: 10.3788/CO.20150804.0629
    [12] 吴晶, 吴晗平, 黄俊斌, 顾宏灿.  光纤光栅传感信号解调技术研究进展 . 中国光学, 2014, 7(4): 519-531. doi: 10.3788/CO.20140704.0519
    [13] 赵明富, 王念, 罗彬彬, 施玉佳, 曹李华.  可同时测量蔗糖浓度和温度的组合光纤光栅传感器 . 中国光学, 2014, 7(3): 476-482. doi: 10.3788/CO.20140703.0476
    [14] 杨洋, 何皓, 李秋顺, 史建国, 李明宇, 董文飞.  TiO2纳米线阵列干涉传感器 . 中国光学, 2014, 7(3): 421-427. doi: 10.3788/CO.20140703.0421
    [15] 蔡浩原.  高分辨率表面等离子体显微镜综述 . 中国光学, 2014, 7(5): 691-700. doi: 10.3788/CO.20140705.0691
    [16] 崔乃迪, 寇婕婷, 梁静秋, 王惟彪, 郭进, 冯俊波, 滕婕, 曹国威.  三环型波导微环谐振器无热化生物传感器 . 中国光学, 2014, 7(3): 428-434. doi: 10.3788/CO.20140703.0428
    [17] 徐国权, 熊代余.  光纤光栅传感技术在工程中的应用 . 中国光学, 2013, 6(3): 306-317. doi: 10.3788/CO.20130603.0306
    [18] 王二伟, 鱼卫星, 王成, 卢振武.  用表面等离子体共振传感器检测纳米间距 . 中国光学, 2013, 6(2): 259-266. doi: 10.3788/CO.20130602.0259
    [19] 李明宇, 薛懿, 罗根, 张超.  平面光波导生物传感器微流通道的不可逆封合 . 中国光学, 2013, 6(1): 103-110. doi: 10.3788/CO.20130601.0103
    [20] 梁浩, 张旭苹, 路元刚.  基于自发布里渊散射的双路分布式光纤传感器设计与实现 . 中国光学, 2009, 2(1): 60-64.
  • 加载中
计量
  • 文章访问数:  473
  • HTML全文浏览量:  84
  • PDF下载量:  623
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-21
  • 修回日期:  2013-12-23
  • 刊出日期:  2014-01-25

覆膜长周期光纤光栅在生化分析中的应用及研究进展

doi: 10.3788/CO.20140701.057
    基金项目:

    国家自然科学基金资助项目(No.91123029,No.61077066);国家高技术研究发展计划(863计划)资助项目(No.2012AA063302);山东省自然科学基金资助项目(No.ZR2012CM029);山东省科学院科技发展基金资助项目(科技合字(2010)第4号)

    作者简介:

    张帆(1986—),女,硕士研究生,黑龙江齐齐哈尔人,2009年于吉林大学获得学士学位,主要从事生物传感器等方面的研究。E-mail:zhangfan555520@163.com

    通讯作者: 姚卫国,E-mail:yaoweiguo1972@gmail.com
  • 中图分类号: TN253;TB383;TN929.11;O439

摘要: 总结了纳米薄膜修饰的长周期光纤光栅在折射率生物传感器方面的研究进展,重点介绍了纳米薄膜对长周期光纤光栅折射率传感性能的影响,详细阐述了覆膜长周期光纤光栅在生化分析检测领域的应用,并对其在折射率传感方面的应用前景作了展望。

English Abstract

张帆, 李秋顺, 姚卫国, 郑晖, 马耀宏, 董文飞. 覆膜长周期光纤光栅在生化分析中的应用及研究进展[J]. 中国光学, 2014, 7(1): 57-67. doi: 10.3788/CO.20140701.057
引用本文: 张帆, 李秋顺, 姚卫国, 郑晖, 马耀宏, 董文飞. 覆膜长周期光纤光栅在生化分析中的应用及研究进展[J]. 中国光学, 2014, 7(1): 57-67. doi: 10.3788/CO.20140701.057
ZHANG Fan, LI Qiu-shun, YAO Wei-guo, ZHENG Hui, MA Yao-hong, DONG Wen-fei. Applications and progress of nanofilm-modified long period fiber grating in biological and chemical analysis[J]. Chinese Optics, 2014, 7(1): 57-67. doi: 10.3788/CO.20140701.057
Citation: ZHANG Fan, LI Qiu-shun, YAO Wei-guo, ZHENG Hui, MA Yao-hong, DONG Wen-fei. Applications and progress of nanofilm-modified long period fiber grating in biological and chemical analysis[J]. Chinese Optics, 2014, 7(1): 57-67. doi: 10.3788/CO.20140701.057
参考文献 (1)

目录

    /

    返回文章
    返回