留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于高性能光学薄膜表征的光热光声检测技术

武潇野 张立超 时光

武潇野, 张立超, 时光. 应用于高性能光学薄膜表征的光热光声检测技术[J]. 中国光学, 2014, 7(5): 701-711. doi: 10.3788/CO.20140705.0701
引用本文: 武潇野, 张立超, 时光. 应用于高性能光学薄膜表征的光热光声检测技术[J]. 中国光学, 2014, 7(5): 701-711. doi: 10.3788/CO.20140705.0701
WU Xiao-ye, ZHANG Li-chao, SHI Guang. Optical-thermal and optical-acoustics detecting techniques applied for the characterizations of high performance optical thin films[J]. Chinese Optics, 2014, 7(5): 701-711. doi: 10.3788/CO.20140705.0701
Citation: WU Xiao-ye, ZHANG Li-chao, SHI Guang. Optical-thermal and optical-acoustics detecting techniques applied for the characterizations of high performance optical thin films[J]. Chinese Optics, 2014, 7(5): 701-711. doi: 10.3788/CO.20140705.0701

应用于高性能光学薄膜表征的光热光声检测技术

doi: 10.3788/CO.20140705.0701
基金项目: 

国家科技重大专项资助项目(No.2009ZX02205)

详细信息
    作者简介:

    时光(1985- ),女,黑龙江鸡西人,硕士,助理研究员,2008年、2011年于电子科技大学分别获得学士、硕士学位,主要从深紫外薄膜方面的研究。

    通讯作者: 武潇野,E-mail:wxy19881107@163.com
  • 中图分类号: O484.41

Optical-thermal and optical-acoustics detecting techniques applied for the characterizations of high performance optical thin films

  • 摘要: 本文介绍了光热与光声探测技术的基本原理,结合光学薄膜的吸收测试、光学薄膜的激光辐照特性表征、激光损伤特性表征以及光学薄膜的机械性质表征等各种具体应用,对激光量热法、光热偏转法、表面声波法等典型的光热、光声检测方法进行了分析;阐述了这些方法的测试原理以及各自优势与不足。介绍了该领域利用这些方法取得的一些成果,并就光声光热检测技术的发展趋势做了展望。
  • [1]

    [1] 范正修, 魏朝阳. 高功率激光系统中光学薄膜的现状及发展趋势[J]. 激光与光电子学进展, 2009, 7:14-17. FAN ZH X, WEI ZH Y. Progress and development trends of optical coatings in high power laser[J]. Laser & Optoelectronics Progress, 2009, 7:14-17.(in Chinese)
    [2] DAVIEST S J, EDWARDS C, TAYLOR G S, et al. Laser-generation ultrasound:its properties mechanisms and multifarious applications[J]. Appl. Phys., 1993, 26:329-348.
    [3] ROGERS J A, MAZNEV A A, BANET M J, et al. Optical generation and characterization of acoustic waves in thin films:fundamentals and applications[J]. Annual Review Materials Science, 2000, 30:117-157.
    [4] SHEN Z H, ZHANG S Y. Laser-induced displacement fields in a film-substrate system[J]. Progress Natural Science, 2001, 11:299-302.
    [5] ZHANG F F, XU W H, HONG Y, et al.Non-destructive characterization of laminated composite films by laser ultrasonic technique[J]. Analytical Sciences, 2001, 17:208-211.
    [6] WELSCH E, RISTAU D. Photothermal measurement on optical thin films[J]. Applied Optics, 1995, 34(31):7239-7253.
    [7] 陈习权, 祖小涛, 郑万国. 表面热透镜技术测试光学薄膜特性研究[J]. 光学与光电技术, 2005, 3(1):53-57. CHEN X Q, ZU X T, ZHENG W G. Application research of STL technique in photoelectric testing of thin film characterization[J]. Optics & Optoelectronic Technology, 2005, 3(1):53-57.(in Chinese)
    [8] 刘鹏程, 沈剑锋, 施柏煊. 透射式光热偏转技术实验装置的建立及应用[J]. 光学仪器, 2002, 24(4-5):73-77. LIU P CH, SHEN J F, SHI B X. The experimental setup's establishment and application for transmission photothermal def lection technique[J]. Optical Instruments, 2002, 24(4-5):73-77.(in Chinese)
    [9] MANN K, BAYER A, GLOGER J, et al. Photo-thermal measurement of absorption and wave front deformations in fused silica[J]. SPIE, 2008, 7132:71321F.
    [10] PINNOW D A, RICH T C. Development of a calorimetric method for making precision optical absorption measurements[J]. Appl. Opt., 1973, 12(5):984-992.
    [11] 唐晋发, 顾培夫, 刘旭, 等.现代光学薄膜技术[M].杭州:浙江大学出版社, 2006. TANG J F, GU P F, LIU X, et al. Modern Optical Thin Film Technology[M]. Hangzhou:Zhejiang University Press, 2006.(in Chinese)
    [12] ARENBERG J W. An error analysis of ISO 11551[J]. SPIE, 2000, 3902:324-331.
    [13] MANN K, ECKERT G, GOERLING C, et al. Characterization of DUV and VUV optical components[J]. SPIE, 2002, 4691:1742-1752.
    [14] WU Z L, KUO P K, LU Y S, et al. Laser-induced surface thermal lensing for thin film characterizations[J]. SPIE, 1996, 2714:294.
    [15] DIJON J E, VAN OOST, PELL C, et al. Laser induced absorption at 355nm in silic studied by calorimetry and photothermal deflection[J]. SPIE, 1996, 2714:61.
    [16] 范树海, 贺洪波, 邵建达, 等. 表面热透镜薄膜吸收测量灵敏度提高方法[J]. 物理学报, 2006, 55(2):758-763. FAN SH H, HE H B, SHAO J D, et al. Method to improve absorption measurement sensitivity of thin films with surface thermal lens technique[J]. Acta Physica Sinica, 2006, 55(2):758-763.(in Chinese)
    [17] 黄祖鑫, 赵建林, 胡晓阳, 等. 光学薄膜弱吸收测试装置参数优化[J]. 红外与激光工程, 2011, 40(9):1779-1783. HUANG Z X, ZHAO J L, HU X Y, et al. Parameters optimized for optical thin film weak absorption testing set-up[J]. Infrared and Laser Engineering, 2011, 40(9):1779-1783.(in Chinese)
    [18] 李绪平, 蒋晓东, 郑万国, 等. 透射式光热透镜技术的原理和应用[J]. 光学仪器, 2008, 30(1):34-39. LI X P, JIANG X D, ZHENG W G, et al. The principle and application for transmission photo-thermal lens technique[J]. Optical Instruments, 2008, 30(1):34-39.(in Chinese)
    [19] BOCCARA C, FOURNIER D. Thermo-optical spectroscopy:detection by the "mirage effect"[J]. Appl. Phys. Lett., 1979(36):130.
    [20] M HLIG C, BUBLITZ S, PAA W. Laser Induced Deflection(LID) method for absolute absorption measurements of optical materials and thin films[J]. SPIE, 2011, 8082:808225.
    [21] M HLIG CH., TRIEBEL W, KUFERT S, et al. Characterization of low losses in optical thin films and Materials[J]. Appl. Opt., 2008, 47:135-142.
    [22] 邵庆. 用光热偏转法研究光学薄膜的弱吸收特性[D].杭州:浙江大学, 1992. SHAO Q. Study on optical thin film weak absorption by photothermal deflection technique[D]. Hangzhou:Zhejiang University, 1992.(in Chinese)
    [23] STARKE K, JUPE M, RISTAU D, et al. Non-linear absorptance of optical parametric amplified ultrashort pulses in dielectric coating materials[J]. SPIE, 2005, 5647:524.
    [24] BLASCHKE H, RISTAU D, WELSCH E, et al. Absolute Measurements of non-linear Absorption near LIDT at 193 nm[J]. SPIE, 2001, 4347:447.
    [25] APEL O, MANN K, MAROWSKY G. Nonlinear thickness dependence of two-photon absorptance in Al2O3 films[J]. Applied Physics, 2000, A71:593-596.
    [26] APEL O, MANN K, ZOELLER A, et al. Nonlinear absorption of thin Al2O3 films at 193 nm[J]. Applied Optics, 2000, 39(18):3165-3169.
    [27] LIU W J, LI B CH. Repetition rate dependence of absorption of fused silica irradiated at 193 nm[J]. COL, 2013, 11(5): 053002.
    [28] NATURA U, MARTIN R, VON DER G G, et al. Kinetics of laser induced changes of characteristic optical properties in lithosil with 193 nm excimer laser exposure[J]. SPIE, 2005, 5754:1312-1319.
    [29] BALASA I, BLASCHKE H, JENSEN L, et al. Impact of SiO2 and CaF2 surface composition on the absolute absorption at 193 nm[J]. SPIE, 2011, 8190:81901T.
    [30] MUHLIG CH, KUFERT S, TRIEBEL W, et al. Simultaneous measurement of bulk absorption and fluorescence in fused silica upon ArFlaer irradiation[J]. SPIE, 2002, 4779:107-116.
    [31] STEWART A F, GUENTHER A H. Laser damage test results on Blazers round-robin thin film samples[J]. Appl. Opt., 1984, 23(21):3774-3778.
    [32] FOLTYN S R. Spot size effects in laser damage testing[J]. Spec. Publ., 1984, 669:368-379.
    [33] BENNETT H E, GLASS A J, GUENTHER A H, et al. Laser induced damage in optical materials: eleventh ASTM symposium[J]. Appl. Opt., 1980, 19(14):2375-2375.
    [34] 黄伟, 张云洞. 连续波强激光辐照下光学薄膜元件损伤机理和热畸变研究[J]. 光学 精密工程, 1996, 4(5):61-66. HUANG W, ZHANG Y D. Study of the damage mechanism and thermal distortion of optical coating components under CW high power laser radiation[J]. Opt. Precision Eng., 1996, 4(5):61-66.(in Chinese)
    [35] 徐俊海, 赵元安, 邵建达, 等. 不同工艺条件下TiO2单层膜的吸收和损伤阈值测试[J]. 中国激光, 2012, 39(4):0407001-1-5. XU J H, ZHAO Y A, SHAO J D, et al. Absorption and laser induced damage threshold of TiO2 single films under different process conditions[J]. Chinese J. Laser, 2012, 39(4):0407001-1-5.(in Chinese)
    [36] 赵灵, 武潇野, 谷永强, 等. 激光量热法测量深紫外氟化物薄膜吸收[J]. 中国激光, 2014, 已收录. ZHAO L, WU X Y, GU Y Q, et al.Measuring the absorptance of DUV fluoride coatings with Laser Calorimetry[J]. Chinese J. Laser, 2014, received.
    [37] ZHANG L CH, CAI X K. High performance fluoride optical coatings for DUV optics[J]. SPIE, 2014, received.
    [38] BERGER L M, SCHNEIDER D, BARBOSA M, et al.Laser acoustic surface waves for the non-destructive characterisation of thermally sprayed coatings[J]. Thermal Spray Bulletin, 2012, 1:56-64.
    [39] DOXBECK M, HUSSAIN M A, FRANKEL J. Use of laser generated creeping longitudinal waves to determine residual stresses[J]. IEEE Ultrasonics Symposium, 2000:725-728.
    [40] 丁毅. 激光薄膜损伤的声学判别方法研究[D].西安:西安工业大学, 2012. DING Y. Study on Acoustic identification method of laser damage in thin films[D]. Xi'an:Xi'an Technological University, 2012.(in Chinese)
    [41] 林悦波. 激光光声法测量红外光窗材料吸收系数的研究[J]. 激光杂志, 1996, 17(4):177-184. LIN Y B. Research on measuring the coefficients of infrared window material by laser photoacoustic technique[J]. Laser J., 1996, 17(4):177-184.(in Chinese)
    [42] KHAN A, PHILIP J, HESS P. Young's modulus of silicon nitride used in scanning force microscope cantilevers[J]. Applied Physics, 2004, 95(4):1667-1672.
    [43] JIANG X, PHILIP J, ZHANG W J, et al. Hardness and Young's modulus of high-quality cubic boron nitride films grown by chemical vapor deposition[J]. Applied Physics, 2003, 93(3):1515-1519.
    [44] 徐晓东, 张淑仪, 张飞飞, 等. 利用光差分技术检测激光激发声表面波定证薄膜材料[J]. 声学学报, 2003, 28(3):201-206. XU X D, ZHANG SH Y, ZHANG F F, et al. Characterizing of thin film materials by optical difference detection of laser generated SAW[J]. Acta Acustica, 2003, 28(3):201-206.(in Chinese)
    [45] 金宝引. 激光声表面波系统及其在薄膜杨氏模量测量中的应用研究[D].天津:天津大学, 2011. JIN B Y. Study on the measurement of thin film's Young's modulus using LG/LD surface acoustic waves[D]. Tianjin:Tianjin University, 2011.(in Chinese)
    [46] 巩岩, 张巍. 193 nm光刻曝光系统的现状及发展[J]. 中国光学与应用光学, 2008, 1(1):25-35. GONG Y, ZHANG W. Present status and progress in 193 nm exposure system in lithography[J]. Chinese J. Optics and Applied Optics, 2008, 1(1):25-35.(in Chinese)
    [47] 张立超, 高劲松. 长春光机所深紫外光学薄膜技术研究进展[J]. 光学 精密工程, 2012, 20(11):2396-2401. ZHANG L CH, GAO J S. Developments of DUV coating technologies in CIOMP[J]. Opt. Precision Eng., 2012, 20(11):2396-2401.(in Chinese)
    [48] CHEN J Q, LEE C J, LOUIS E, et al. Characterization of EUV induced carbon films using laser-generated surface acoustic waves[J]. Diamond & Related Materials, 2009, 18:768-771.
    [49] SCHNEIDER D, SCHWARZ T. A photoacoustic method for characterizing thin films[J]. Surface and Coatings Technology, 1997, 91:136-146.
    [50] HIRAO M, FUKUOKA H, HORI K. Acoustoclastic effect of Rayleigh surface wave in isotropic materials[J]. Applied Mechanics, 1981(48):119-124.
    [51] KROMINE A K, FOMITCHOV P A, KRISHNASWAMY S, et al. Applications of scanning laser source technique for detection of surface-breaking defects[J]. SPIE, 2000, 4076:252-259.
    [52] SOHN Y, KRISHNASWAMY S. Mass spring lattice modeling of the scanning laser source technique[J]. Ultrasonics, 2002, 39(8):543-551.

  • [1] 文康, 李和章, 马壮, 高丽红, 王富耻, 李文智.  光斑尺寸对连续激光辐照铝合金温度响应影响研究 . 中国光学, 2020, 13(5): 1023-1031. doi: 10.37188/CO.2020-0022
    [2] 袁理, 张晓辉.  采用五棱镜扫描法检测大口径平面镜的面形 . 中国光学, 2019, 12(4): 920-931. doi: 10.3788/CO.20191204.0920
    [3] 吕妍, 王迪, 王志国, 王明吉, 李栋.  多元热流体激光检测及杂光抑制光路 . 中国光学, 2019, 12(2): 310-320. doi: 10.3788/CO.20191202.0310
    [4] 李代林, 杨丹, 崔纪琨, 王宁, 朱化凤.  连续激光辐照下的TiO2薄膜热传导性质 . 中国光学, 2019, 12(3): 628-637. doi: 10.3788/CO.20191203.0628
    [5] 祝祥, 邵双运, 宋志军.  基于线结构光传感器的轨道板几何形貌检测方法 . 中国光学, 2018, 11(5): 841-850. doi: 10.3788/CO.20181105.0841
    [6] 欧阳爱国, 唐天义, 王海阳, 刘燕德.  近红外光谱法检测乙醇柴油主要性能指标 . 中国光学, 2017, 10(3): 363-369. doi: 10.3788/CO.20171003.0363
    [7] 朱晓睿, 卢伟业, 饶雨舟, 李越胜, 卢志民, 姚顺春.  TDLAS直接吸收法测量CO2的基线选择方法 . 中国光学, 2017, 10(4): 455-461. doi: 10.3788/CO.20171004.0455
    [8] 戚子文, 刘炳国, 张仲海, 卢丙辉, 刘国栋.  双点干涉法位相缺陷检测中的解相算法比较 . 中国光学, 2016, 9(4): 483-490. doi: 10.3788/CO.20160904.0483
    [9] 李文智, 韦成华, 高丽红, 马壮, 王富耻, 吴涛涛.  散射光信号与石墨-二氧化硅激光辐照烧蚀阈值的关系 . 中国光学, 2016, 9(6): 642-648. doi: 10.3788/CO.20160906.0642
    [10] EMDEBenjamin, HERMSDORFJörg, KAIERLEStefan, OVERMEYERLudger.  利用Nd: YAG激光诱导击穿光谱法检测橡胶共混物中锌的均匀性分布 . 中国光学, 2015, 8(4): 596-602. doi: 10.3788/CO.20150804.0596
    [11] 杨名宇.  利用激光主动探测技术实现光电窥视设备检测 . 中国光学, 2015, 8(2): 255-262. doi: 10.3788/CO.20150802.0255
    [12] 聂山钧, 郭劲, 邵俊峰, 王挺峰, 汤伟.  激光辐照下镀铬介质高吸收镜的热变形 . 中国光学, 2015, 8(1): 84-90. doi: 10.3788/CO.20150801.0084
    [13] 汤兆鑫, 黄玮, 许伟才, 刘立峰, 徐象如.  差分五棱镜扫描法在波前检测中的应用 . 中国光学, 2014, 7(6): 1003-1011. doi: 10.3788/CO.20140706.1003
    [14] 王珣, 金春水, 匡尚奇, 喻波.  极紫外光学器件辐照污染检测技术 . 中国光学, 2014, 7(1): 79-88. doi: 10.3788/CO.20140701.079
    [15] 刘峰, 彭国良, 杜太焦, 郑艳丽, 阎辉.  切向气流对激光加热金属板非熔化穿孔效应的影响 . 中国光学, 2013, 6(3): 332-342. doi: 10.3788/CO.20130603.0332
    [16] 王希军.  激光散斑的亚像素位移法计算及比较 . 中国光学, 2012, 5(6): 652-657. doi: 10.3788/CO.20120506.0652
    [17] 陶蒙蒙, 杨鹏翎, 刘卫平, 吴勇, 武俊杰, 叶锡生.  高能激光辐照下光纤布拉格光栅响应特性 . 中国光学, 2012, 5(5): 544-549. doi: 10.3788/CO.20120505.0544
    [18] 苏少昌, 王希军.  皮秒激光透射率法表征高分子薄膜双光子吸收截面 . 中国光学, 2011, 4(1): 82-85.
    [19] 焦路光, 赵国民, 江厚满.  切向气流作用下激光对典型金属靶的辐照效应 . 中国光学, 2011, 4(1): 77-81.
    [20] 张建英, 谢文明, 曾志平, 李晖.  光声成像技术的最新进展 . 中国光学, 2011, 4(2): 111-117.
  • 加载中
计量
  • 文章访问数:  273
  • HTML全文浏览量:  53
  • PDF下载量:  725
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-12
  • 修回日期:  2014-08-15
  • 刊出日期:  2014-09-25

应用于高性能光学薄膜表征的光热光声检测技术

doi: 10.3788/CO.20140705.0701
    基金项目:

    国家科技重大专项资助项目(No.2009ZX02205)

    作者简介:

    时光(1985- ),女,黑龙江鸡西人,硕士,助理研究员,2008年、2011年于电子科技大学分别获得学士、硕士学位,主要从深紫外薄膜方面的研究。

    通讯作者: 武潇野,E-mail:wxy19881107@163.com
  • 中图分类号: O484.41

摘要: 本文介绍了光热与光声探测技术的基本原理,结合光学薄膜的吸收测试、光学薄膜的激光辐照特性表征、激光损伤特性表征以及光学薄膜的机械性质表征等各种具体应用,对激光量热法、光热偏转法、表面声波法等典型的光热、光声检测方法进行了分析;阐述了这些方法的测试原理以及各自优势与不足。介绍了该领域利用这些方法取得的一些成果,并就光声光热检测技术的发展趋势做了展望。

English Abstract

武潇野, 张立超, 时光. 应用于高性能光学薄膜表征的光热光声检测技术[J]. 中国光学, 2014, 7(5): 701-711. doi: 10.3788/CO.20140705.0701
引用本文: 武潇野, 张立超, 时光. 应用于高性能光学薄膜表征的光热光声检测技术[J]. 中国光学, 2014, 7(5): 701-711. doi: 10.3788/CO.20140705.0701
WU Xiao-ye, ZHANG Li-chao, SHI Guang. Optical-thermal and optical-acoustics detecting techniques applied for the characterizations of high performance optical thin films[J]. Chinese Optics, 2014, 7(5): 701-711. doi: 10.3788/CO.20140705.0701
Citation: WU Xiao-ye, ZHANG Li-chao, SHI Guang. Optical-thermal and optical-acoustics detecting techniques applied for the characterizations of high performance optical thin films[J]. Chinese Optics, 2014, 7(5): 701-711. doi: 10.3788/CO.20140705.0701
参考文献 (1)

目录

    /

    返回文章
    返回