留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氧化物的0.8~1.7μm和3.7~4.8μm硬质宽带红外增透膜研制

王彤彤

王彤彤. 基于氧化物的0.8~1.7μm和3.7~4.8μm硬质宽带红外增透膜研制[J]. 中国光学, 2014, 7(5): 816-822. doi: 10.3788/CO.20140705.0816
引用本文: 王彤彤. 基于氧化物的0.8~1.7μm和3.7~4.8μm硬质宽带红外增透膜研制[J]. 中国光学, 2014, 7(5): 816-822. doi: 10.3788/CO.20140705.0816
WANG Tong-tong. Fabrication of hard infrared anti-reflection coating with broadband in the wavelength of 0.8-1.7 μm and 3.7-4.8 μm based on oxide material[J]. Chinese Optics, 2014, 7(5): 816-822. doi: 10.3788/CO.20140705.0816
Citation: WANG Tong-tong. Fabrication of hard infrared anti-reflection coating with broadband in the wavelength of 0.8-1.7 μm and 3.7-4.8 μm based on oxide material[J]. Chinese Optics, 2014, 7(5): 816-822. doi: 10.3788/CO.20140705.0816

基于氧化物的0.8~1.7μm和3.7~4.8μm硬质宽带红外增透膜研制

doi: 10.3788/CO.20140705.0816
基金项目: 

国家自然科学基金资助项目(No.60478035)

详细信息
    作者简介:

    王彤彤(1979- ),男,吉林长春人,博士,副研究员,2002年于延边大学获得学士学位,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事先进光学薄膜理论和制备方面的研究。

    通讯作者: 王彤彤,E-mail:wangtongtong@126.com
  • 中图分类号: O484;TN304

Fabrication of hard infrared anti-reflection coating with broadband in the wavelength of 0.8-1.7 μm and 3.7-4.8 μm based on oxide material

  • 摘要: 从实际应用出发,在0入射的条件下,在ZnS基底上针对0.8~1.7 m和3.7~4.8 m两个红外波段,设计并制备了双波段红外增透膜。论述了材料选择、膜系设计和制备方法,最终使用等离子辅助沉积技术在ZnS窗口上制备出双波段红外增透膜,透过率及环境测试结果表明:在0.8~1.7 m波段双面平均透过率大于95%,在3.7~4.8 m波段双面平均透过率大于96%。膜层结合牢固并有良好的耐摩擦性能。
  • [1]

    [1] SEWARD C R, PICKLES C S J, MARRAH R, et al. Rain erosion data on window and dome materials[J]. SPIE, 1992, 1760:280-290.
    [2] SULLIVAN R M, PHELPS A, KIRSCH J A, et al. Erosion Studies of Infrared Dome Materials[J]. SPIE, 2007, 6645:68450G-1-68450G-11.
    [3] JENNIFER D, TRAYLOR K, WALTER T, et al. Optical and durability properties of infrared transmitting thin films[J]. Applied Optics, 1997, 36(10):2157-2159.
    [4] HEYMANN E J. High-speed Impact between a Liquid Drop and a Solid Surface[J]. J. Appl. Phys., 1969, 40(13):5113-5122.
    [5] SEWARD C R, COAD E J, PICKLES C S J, et al. The rain erosion resistance of diamond and other window materials[J]. SPIE, 1994, 2286:285-300.
    [6] FIELD J E, DEAR J P, OGREN J E. The effects of target compliance on liquid drop impact[J]. J. Appl. Phys., 1989, 65(2):533-540.
    [7] 王彤彤, 高劲松, 宋琦, 等. RLVIP技术制备Ge1-xCx薄膜的X射线光电子能谱[J]. 光学 精密工程, 2008, 16(4):565-569. WANG T T, GAO J S, SONG Q, et al. X-ray photoelectron spectroscopy of Ge1-xCx thin films prepared by RLVIP technique[J]. Opt. Precision Eng., 2008, 16(4):565-569.(in Chinese)
    [8] MACLEOD H A. Thin Film Optical Filters[M]. Second Edition, London:Adam Hilger Ltd, 1986.
    [9] SNAIL K A. CVD diamond as an optical material for adverse environments[J]. SPIE, 1990, 1330:46-64.
    [10] BRIERLEY C J, COSTELLO M C, HUDSON M D, et al. Diamond Coatings for Large Area IR Windows[J]. SPIE, 1994, 2286:307-315.
    [11] HASAN W. Durability testing of hard carbon coatings for Ge and ZnS substrates[J]. SPIE, 1994, 2286:354-363.
    [12] GIBSON D R, WADDELL E M. Advances in ultradurable phosphide-based broadband anti-reflection coatings for sand and rain erosion protection of infrared windows and domes[J]. SPIE, 1994, 2286:335-346.
    [13] 王彤彤. 霍尔离子源辅助制备长波红外碳化锗增透膜[J]. 发光学报, 2013, 34(3):319-323. WANG T T. Fabrication of The long-wave infrared germanium carbide antireflection coatings by end-hall ion source[J]. Chin. J. Lumin., 2013, 34(3):319-323.(in Chinese)
    [14] 贾克辉, 徐颖, 高劲松, 等.等离子辅助镀膜技术[J]. 发光学报, 2002, 23(6):623-626. JIA K H, XU Y, GAO J S, et al. Plasma ion assisted deposition for optical coating[J]. Chinese J. Luminescence, 2002, 23(6):623-626.(in Chinese).
    [15] 陈红, 王彤彤, 高劲松, 等. 应用SiC反射镜表面改性技术提高TMC光学系统信噪比[J]. 光学 精密程, 2009, 17(12):2952-2957. CHEN H, WANG T T, GAO J S, et al. Improvement of signal noise ratio of TMC optical system by SiC surface modification technology[J]. Opt. Precision Eng., 2009, 17(12):2952-2957.(in Chinese)
    [16] 王彤彤. 应用碳化硅表面改性技术降低全息-离子束刻蚀光栅刻槽的粗糙度[J]. 发光学报, 2013, 34(11):1489-1493. WANG T T. Roughness decreasing of silicon carbide hologram-ion beam etching grating by using surface modification technique[J]. Chin. J. Lumin., 2013, 34(11):1489-1493.(in Chinese)

  • [1] 徐勤飞, 刘大福, 龚海梅, 吴家荣, 蒋梦蝶, 张亚妮, 季鹏, 王仍, 张麟.  双波段芯片集成封装组件的低温光谱定量化 . 中国光学, 2017, 10(6): 744-751. doi: 10.3788/CO.20171006.0744
    [2] 朱业传, 苑伟政, 虞益挺.  表面等离子体平面金属透镜及其应用 . 中国光学, 2017, 10(2): 149-163. doi: 10.3788/CO.20171002.0149
    [3] 王五松, 张利伟, 张冶文.  表面等离子波导及应用 . 中国光学, 2015, 8(3): 329-339. doi: 10.3788/CO.20150803.0329
    [4] 蔡浩原.  高分辨率表面等离子体显微镜综述 . 中国光学, 2014, 7(5): 691-700. doi: 10.3788/CO.20140705.0691
    [5] 管小伟, 吴昊, 戴道锌.  硅基混合表面等离子体纳米光波导及集成器件 . 中国光学, 2014, 7(2): 181-195.
    [6] 白玉琢, 木锐, 马琳, 贾钰超, 普群雁, 薛经纬.  超长焦距红外双视场光学系统设计 . 中国光学, 2014, 7(4): 631-637. doi: 10.3788/CO.20140704.0631
    [7] 许廷发, 李俊涛, 张一舟, 申子宜, 郭巳秋.  真彩色传递双波段图像融合 . 中国光学, 2014, 7(3): 402-410. doi: 10.3788/CO.20140703.0402
    [8] 王二伟, 鱼卫星, 王成, 卢振武.  用表面等离子体共振传感器检测纳米间距 . 中国光学, 2013, 6(2): 259-266. doi: 10.3788/CO.20130602.0259
    [9] 葛婧菁.  便携式双波段荧光眼底血管造影仪的光学设计 . 中国光学, 2013, 6(2): 223-230. doi: 10.3788/CO.20130602.0223
    [10] 窦银萍, 孙长凯, 林景全.  激光等离子体极紫外光刻光源 . 中国光学, 2013, 6(1): 20-33. doi: 10.3788/CO.20130601.0020
    [11] 曲锋, 朱华新, 刘桂林, 李帅, 孙强.  基于ZF6基底的可见光宽谱带高性能增透膜 . 中国光学, 2013, 6(4): 551-556. doi: 10.3788/CO.20130604.0551
    [12] 任玉, 李付锦, 董旭, 林景全.  飞秒激光等离子体通道传导能量特性的研究进展 . 中国光学, 2012, 5(2): 133-142. doi: 10.3788/CO.20120502.0133
    [13] 杨道奇, 付秀华, 耿似玉, 杨永亮, 潘永刚.  0.6~1.55 μm可见/近红外超宽带增透膜的研制 . 中国光学, 2012, 5(3): 270-276. doi: 10.3788/CO.20120503.0270
    [14] 刘镜, 刘娟, 王涌天, 谢敬辉.  亚波长金属光栅的表面等离子体激元共振特性 . 中国光学, 2011, 4(4): 363-368.
    [15] 叶继飞, 洪延姬, 王广宇, 李南雷.  激光等离子体微推进技术的研究进展 . 中国光学, 2011, 4(4): 319-326.
    [16] 魏孜洵, 付秀华, 石澎, 梅禹珊.  三维腹腔镜端面宽带增透膜的研制 . 中国光学, 2011, 4(2): 196-200.
    [17] 宫大为, 付秀华, 耿似玉, 杨道奇.  红外双波段激光滤光膜的研制 . 中国光学, 2011, 4(3): 293-298.
    [18] MA Jun-xian, FANG Yu, CHEN Bi-bo, TAN Rui-hu, LUO Xian-gang.  T型缝隙结构表面等离子波导的基本特性研究 . 中国光学, 2010, 3(1): 89-92.
    [19] 雷建国, 刘天航, 林景全, 高勋, 厉宝增.  表面等离子体激元的若干新应用 . 中国光学, 2010, 3(5): 432-439.
    [20] LIU Juan, WANG Yong-tian, XU Li-wei, XIE Jing-hui.  表面等离子体波在金属纳米缝超强透射中的作用 . 中国光学, 2010, 3(1): 33-37.
  • 加载中
计量
  • 文章访问数:  316
  • HTML全文浏览量:  89
  • PDF下载量:  546
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-11
  • 修回日期:  2014-07-18
  • 刊出日期:  2014-09-25

基于氧化物的0.8~1.7μm和3.7~4.8μm硬质宽带红外增透膜研制

doi: 10.3788/CO.20140705.0816
    基金项目:

    国家自然科学基金资助项目(No.60478035)

    作者简介:

    王彤彤(1979- ),男,吉林长春人,博士,副研究员,2002年于延边大学获得学士学位,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事先进光学薄膜理论和制备方面的研究。

    通讯作者: 王彤彤,E-mail:wangtongtong@126.com
  • 中图分类号: O484;TN304

摘要: 从实际应用出发,在0入射的条件下,在ZnS基底上针对0.8~1.7 m和3.7~4.8 m两个红外波段,设计并制备了双波段红外增透膜。论述了材料选择、膜系设计和制备方法,最终使用等离子辅助沉积技术在ZnS窗口上制备出双波段红外增透膜,透过率及环境测试结果表明:在0.8~1.7 m波段双面平均透过率大于95%,在3.7~4.8 m波段双面平均透过率大于96%。膜层结合牢固并有良好的耐摩擦性能。

English Abstract

王彤彤. 基于氧化物的0.8~1.7μm和3.7~4.8μm硬质宽带红外增透膜研制[J]. 中国光学, 2014, 7(5): 816-822. doi: 10.3788/CO.20140705.0816
引用本文: 王彤彤. 基于氧化物的0.8~1.7μm和3.7~4.8μm硬质宽带红外增透膜研制[J]. 中国光学, 2014, 7(5): 816-822. doi: 10.3788/CO.20140705.0816
WANG Tong-tong. Fabrication of hard infrared anti-reflection coating with broadband in the wavelength of 0.8-1.7 μm and 3.7-4.8 μm based on oxide material[J]. Chinese Optics, 2014, 7(5): 816-822. doi: 10.3788/CO.20140705.0816
Citation: WANG Tong-tong. Fabrication of hard infrared anti-reflection coating with broadband in the wavelength of 0.8-1.7 μm and 3.7-4.8 μm based on oxide material[J]. Chinese Optics, 2014, 7(5): 816-822. doi: 10.3788/CO.20140705.0816
参考文献 (1)

目录

    /

    返回文章
    返回