Bullet radiation detection range analysis based on multiple infrared visual range prediction models
-
摘要: 本文基于子弹飞行过程中的红外辐射特性和热成像模型,结合大气对红外辐射吸收和散射衰减,在不同距离处将子弹热成像模型视为扩展源目标和点源目标,利用最小可探测温差(MDTD)、最小可分辨温差(MRTD)和噪声等效功率(NEP)分别给出了相应红外视距模型的估算方法。根据红外热像仪常用参数以3种蒙皮温度给出了3种不同模型下子弹辐射作用距离的计算实例及结果:MDTD模型下得到的作用距离最长,MRTD模型计算所得的作用距离约为MDTD模型的2/3,由NEP模型计算所得的作用距离最短,不到MDTD模型视距的1/2。研究表明,实际设计时应根据不同的系统性能选择作用距离模型。Abstract: On the basis of analysis of the infrared radiation characteristics and the atmospheric absorption and scattering attenuation, bullet's thermal imaging model can be treated as the extended source target and point target in different distance. The minimum detectable temperature difference(MDTD), minimum resolvable temperature difference(MRTD) and noise equivalent power(NEP) models are used for estimating the corresponding bullet radiation detection range. Examples and results of the bullet radiation operating range under three kinds of models are given according to the specific thermal imager's parameters and three kinds of skin temperature. The operating range is the longest when calculated by MDTD model, and 2/3 of the longest operating range can be obtained with MRTD model. The operating range caculated with NEP model is the shortest, just less than 1/2 of the longest operating range. This study shows that the reasonable operating range model should be chosen based on the system performance in actual design.
-
Key words:
- bullet radiation /
- operating range /
- MDTD /
- MRTD /
- NEP
-
表 1 红外热像仪的性能参数
Table 1. The parameters of infrared thermal imager
参数名称 参数值 探测器像素/pixel 320×240 像元边长/μm 25 光谱响应/μm 8~14 NETD/K <0.05 F数 1.7 通光孔径/nm 12.5 系统透过率 0.93 帧频/Hz 50 SNR 10 积分时间/ms 2 表 2 作用距离计算结果对比
Table 2. Comparison of operating range results
子弹速度/
(m·s -1)MDTD/km MRTD/km NEP/km 文献5/km 700 4.83 3.09 2.01 5.08 850 5.82 3.77 2.35 5.27 1 000 6.29 4.27 2.52 5.61 -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]