留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用APD阵列的共口径激光成像光学系统设计

于潇 姚园 徐正平

于潇, 姚园, 徐正平. 采用APD阵列的共口径激光成像光学系统设计[J]. 中国光学(中英文), 2016, 9(3): 349-355. doi: 10.3788/CO.20160903.0349
引用本文: 于潇, 姚园, 徐正平. 采用APD阵列的共口径激光成像光学系统设计[J]. 中国光学(中英文), 2016, 9(3): 349-355. doi: 10.3788/CO.20160903.0349
YU Xiao, YAO Yuan, XU Zheng-ping. Laser imaging optical system design with a shared aperture employing APD array[J]. Chinese Optics, 2016, 9(3): 349-355. doi: 10.3788/CO.20160903.0349
Citation: YU Xiao, YAO Yuan, XU Zheng-ping. Laser imaging optical system design with a shared aperture employing APD array[J]. Chinese Optics, 2016, 9(3): 349-355. doi: 10.3788/CO.20160903.0349

采用APD阵列的共口径激光成像光学系统设计

doi: 10.3788/CO.20160903.0349
基金项目: 

中国科学院国防科技创新基金项目 No.CXJJ-14-S123

吉林省科技发展计划资助项目 No.20150204022GX

详细信息
    通讯作者:

    于潇(1990-),女,黑龙江哈尔滨人,硕士,研究实习员,2014年于哈尔滨工业大学获硕士学位,主要从事航空光学成像链路与光学系统设计方面的研究。E-mail:yuxiaojllove@126.com

  • 中图分类号: TP721.2;TP703

Laser imaging optical system design with a shared aperture employing APD array

Funds: 

Supported by Innovation Fund Project of National Defense Science and Technology, Chinese Academy of Sciences No.CXJJ-14-S123

Jilin Provincial S & T Development Program Project of China No.20150204022GX

  • 摘要: 针对机载平台激光3D成像系统的轻小型需求,设计了采用APD阵列的共口径激光收发光学系统。在分析激光成像系统照明方式及其光学系统结构的基础上,给出了激光3D成像光学系统结构框图:激光经衍射元件实现分束照明,采用双工反射镜实现收发光路的耦合。该光学系统用于2 km以内的目标三维成像,根据激光测距方程,确定了接收光学系统的参数以获得满足信噪比的回波能量。为避免造成像素之间串扰,设计了5倍扩束比的发射光学系统。最后,采用偏振片与1/4波片相结合的方式消除杂光,降低了发射光路对接收光路的影响。设计结果表明:接收光学系统弥散斑直径小于120 μm,畸变小于0.2%。该光学系统体积小、重量轻,成像质量良好,可为同类激光成像光学系统提供借鉴参考。

     

  • 图 1  激光发射/接收系统结构示意图

    Figure 1.  Block diagram of laser launching/receiving imaging system

    图 2  接收光学系统结构图

    Figure 2.  Structure diagram of receiving optical system

    图 3  接收光学系统场曲和畸变曲线

    Figure 3.  Field curves and distortion graph of receiving optical system

    图 4  能量集中度曲线

    Figure 4.  Diffraction encircled energy graph of receiving optical system

    图 5  发射光学系统结构示意图

    Figure 5.  Principle diagram of transmitting optical system

    图 6  激光3D成像光学系统实物图

    Figure 6.  Optical system of laser 3D imaging

    图 7  激光照射Damman光栅后和激光照射成像光纤后光斑分布图

    Figure 7.  Spot distribution of laser irradiated Damman grating and laser spot distribution of laser fiber after laser irradiation

    图 8  镜头前无波片、波片垂直放置、波片倾斜放置时,C10508采集到的目标回波信号

    Figure 8.  Echoing signal in condition of no wave plate,with wave plate vertically placed and wave plate tilted

    表  1  光学设计约束

    Table  1.   Optical design constrain

    参数参数值
    工作波段/mm1.064
    焦距/mm320
    F数6.4
    视场角/(°)0.648 2
    像元数8×8
    像元尺寸/μm320×320
    畸变/%<1.76
    弥散圆直径/μm<120
    下载: 导出CSV
  • [1] MOLEBNY V,KAMERMAN G,STEINVALL O. Laser radar:from early history to new trends[J]. SPIE,2010,7835:783502-1-783502-30.
    [2] 何伟基,司马博羽,苗壮,等.光子计数三维成像激光雷达反转误差的校正[J].光学 精密工程,2013,21(10):2488-2494.

    HE W J,SIMA B Y,MIAO ZH,et al.. Correction of reversal errors in photon counting 3D imaging radar[J]. Opt. Precision Eng.,2013,21(10):2488-2494.(in Chinese)
    [3] 胡峰,胡春生,王省书,等.成像激光雷达与摄像机外部位置关系的标定[J].光学 精密工程,2011,19(4):938-943.HU

    F,HU CH SH,WANG X SH,et al.. Calibration of external relation between imaging laser radar and camera[J]. Opt. Precision Eng.,2011,19(4):938-943.(in Chinese)
    [4] 徐正平,沈宏海,许永森,等.激光成像系统高精度目标距离和强度信息提取[J].红外与激光工程,2014(8):2668-2672.

    Xu Z P,Shen H H,Xu Y S,et al.. Target-distance and intensity information detecting with high precision in laser imaging system[J]. Infrared and Laser Engineering,2014(8):2668-2672.(in Chinese)
    [5] 陈骁,石志广,杨卫平,等.利用三维点云的圆锥状弹头目标参数估计[J].红外与激光工程,2014(10):3480-3485.

    CHEN X,SHI ZH G,YANG W P,et al.. Parameter estimation of conical warhead target based on 3D point cloud[J]. Infrared and Laser Engineering,2014(10):3480-3485.(in Chinese)
    [6] 张秋晨,施蕊,李卓.激光成像目标模拟器建模方法[J].红外与激光工程,2015(1):112-117.

    ZHANG Q CH,SHI R,L ZH. Modeling method of laser imaging target simulator[J]. Infrared and Laser Engineering,2015(1):112-117.(in Chinese)
    [7] STETTNER R,BAILEY H,RICHMOND R. Eye-safe laser radar 3-D imaging[J]. RTO-MP-SCI-145,2004,23:1-16.
    [8] 严洁,阮友田,薛珮瑶.主被动光学图像融合技术研究[J].中国光学,2015(3):378-385.

    YAN J,RUAN Y T,XUE P Y. Active and passive optical image fusion technology[J]. Chinese Optics,2015(3):378-385.(in Chinese)
    [9] MCMANAMON P F. A history of laser radar in the united states[J]. SPIE,2010,7684:76840T-1-76840T-11.
    [10] SCAMAN M E,ECONOMIKOS L. Computer vision for automatic inspection of complex metal patterns on multichip modules(MCM-D)[J]. IEEE,1995,18(4):675-684.
    [11] 金光,李艳杰,钟兴,等.空间成像与激光通信共口径光学系统设计[J].光学 精密工程,2014,22(8):2067-2074.

    JIN G,LI Y J,ZHONG X,et al.. Design of co-aperture optical system for space imaging and laser communication[J]. Opt. Precision Eng.,2014,22(8):2067-2074.(in Chinese)
    [12] 王锐.激光距离选通成像门宽对图像信噪比影响[J].中国光学,2015(6):951-956.

    WANG R. Effect of gate width of laser range gating imaging on image SNR[J]. Chinese Optics,2015(6):951-956.(in Chinese)
    [13] 李艳杰,金光,张元,等.成像与激光发射系统的共口径设计与实验[J].中国光学,2015(2):220-226.

    LI Y J,JIN G,ZHANG Y,et al.. Co-aperture optical system for imaging and laser transmitting[J]. Chinese Optics,2015(2):220-226.(in Chinese).
    [14] 张学明.激光接收与彩色电视共窗口设计[J].中国光学,2014(6):942-948.

    ZHANG X M. Optical design of laser receiving and color TV confocal-window[J]. Chinese Optics,2014(6):942-948.(in Chinese)
    [15] YAN F,WANG X. Using real-time embedded system with multiple DSPs in corona detection[J]. SPIE,2006,6027:928-933.
    [16] 陆洪武.太赫兹波束准直光学系统设计[J].光学与光电技术,2015,13(6):77-81.

    CHEN H W. Design of terahertz beam collimation optical system[J]. Optics & Optoelectronic Technology,2015(6):77-81.(in Chinese)
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1486
  • HTML全文浏览量:  275
  • PDF下载量:  915
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-26
  • 修回日期:  2016-02-23
  • 刊出日期:  2016-01-25

目录

    /

    返回文章
    返回