留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁编码超材料的理论与应用

张磊 刘硕 崔铁军

张磊, 刘硕, 崔铁军. 电磁编码超材料的理论与应用[J]. 中国光学(中英文), 2017, 10(1): 1-12. doi: 10.3788/CO.20171001.0001
引用本文: 张磊, 刘硕, 崔铁军. 电磁编码超材料的理论与应用[J]. 中国光学(中英文), 2017, 10(1): 1-12. doi: 10.3788/CO.20171001.0001
ZHANG Lei, LIU Shuo, CUI Tie-jun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1-12. doi: 10.3788/CO.20171001.0001
Citation: ZHANG Lei, LIU Shuo, CUI Tie-jun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1-12. doi: 10.3788/CO.20171001.0001

电磁编码超材料的理论与应用

基金项目: 

国家自然科学基金资助项目 61571117

详细信息
    作者简介:

    张磊(1992-), 男, 安徽芜湖人, 博士研究生, 2015年于西安电子科技大学获得学士学位, 主要从事透射式、反射式超材料天线方面的研究。E-mail:cheunglee@126.com

    通讯作者:

    崔铁军, E-mail:tjcui@seu.edu.cn

  • 中图分类号: O441.4

Theory and application of coding metamaterials

Funds: 

National Natural Science Foundation of China 61571117

More Information
  • 摘要: 本文系统地对编码超材料、数字超材料及现场可编程超材料的新进展进行了综述,讨论其对电磁波的实时调控和构造多功能器件的能力。首先,引入1-bit编码超材料,由“0”和“1”两种编码单元构成,分别对应于相位相反的电磁响应。通过控制不同的“0”和“1”编码序列,可以调控电磁波,并实现不同功能。这种1-bit编码超材料可以扩展到2-bit,甚至更高比特。其次,介绍了一种由开关二极管来控制的数字编码超材料,每个编码单元可通过二极管的开和关来获得不同的相位响应,进而获得不同的数字态。结合现场可编程门阵列(FPGA)控制系统,实现了对数字超材料的实时可编程设计,构造出现场可编程超材料。最后,研究了编码超材料对太赫兹波的调控,包括太赫兹波宽带漫散射及其对目标雷达散射截面(RCS)的缩减、各向异性编码超材料对太赫兹波的极化调控和波束调控等。数值仿真和实验测试结果吻合很好,验证了编码超材料的出色性能,展示了编码超材料调控电磁波的多功能性。编码超材料对微波及太赫兹波的实时控制可用于制作波束分离、波束偏折、极化转换等功能器件,也可在宽带范围内有效缩减目标RCS。

     

  • 图 1  1-bit编码超表面[40]

    Figure 1.  Illustration of the 1-bit coding metasurface[40]

    图 2  编码序列“010101…/010101…”和“010101…/101010…”下1-bit编码超表的远场方向图[40]

    Figure 2.  Full-wave simulated scattering patterns of 1-bit periodic coding metasurfaces with coding sequences "010101…/010101…" and "010101…/101010…"[40]

    图 3  数字超表面的基本单元

    Figure 3.  Metamaterials particle for realizing the digital metasurface

    图 4  由FPGA控制实现可编程超表面的流程图

    Figure 4.  A flow diagram for realizing a programmable metasurface controlled by the FPGA hardware

    图 5  不同编码序列下可编程超表面的散射方向图

    Figure 5.  Scattering patterns of the programmalbe metasurface under different coding squences

    图 6  编码超表面及闽科夫斯基单元[46]

    Figure 6.  Coding metasurface and Minkowski coding particle[46]

    图 7  1-bit、2-bit和3-bit编码的构成单元[46]

    Figure 7.  Designed 1-, 2-, and 3-bit Minkowski particles using different-scale Minkowski loops[46]

    图 8  2-bit编码超表面在1、1.4、和1.8 THz处的三维散射方向图[46]

    Figure 8.  3D scattering pattern of the 2-bit coding metasurface at 1, 1.4, and 1.8 THz[46]

    图 9  编码超表面的加工流程和样品[46]

    Figure 9.  Fabrication process and sample of the coding metasurface[46]

    图 10  实验测试系统[46]

    Figure 10.  A custom-built measurement system[46]

    图 11  垂直入射波下2-bit编码超表面散射系数的测试和仿真结果对比[46]

    Figure 11.  Measured and simulated backward scattering coefficients of the 2-bit coding metasurface in the frequency range from 0.8 to 2 THz under normal incidence[46]

    图 12  各向异性编码超材料的双功能示意图

    Figure 12.  An example to demonstrate the flexibility of the anisotropic coding metasurface

    图 13  2-bit各向异性编码超表面的16种单元结构[47]

    Figure 13.  Structure of the 16 unit cells for the 2-bit anisotropic coding metasurface[47]

    图 14  M1编码下1-bit各向异性超表面三维远场散射方向图(a)x极化(b)y极化[47]

    Figure 14.  3D far-field scattering patterns of the 1-bit anisotropic coding metasurface with coding matrix M1 (a) under the x polarization and (b) the y polarization[47]

    图 15  M1编码下2-bit各向异性超表面的三维远场散射方向图(a)x极化(b)y极化[47]

    Figure 15.  3D far-field scattering patterns of the 2-bit anisotropic coding metasurface with coding matrix M1(a) under the x polarization and (b) the y polarization[47]

    图 16  M2编码下2-bit各向异性超表面的仿真结果[47]

    Figure 16.  Simulated results of the 2-bit anisotropic coding metasurface with coding matrix M2[47]

  • [1] CUI T J, SMITH D R, LIU R. Metamaterials:Theory, Design, and Applications[M]. New York:Springer Science & Business Media, 2009.
    [2] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10:509-514. doi: 10.1070/PU1968v010n04ABEH003699
    [3] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292:77-79. doi: 10.1126/science.1058847
    [4] PENDRY J B. Negative refraction makes a perfect lens[J]. Physics Review Letter, 2000, 85:3966-3969. doi: 10.1103/PhysRevLett.85.3966
    [5] ENOCH S, TAYEB G, SABOUROUX P, et al.. A metamaterial for directive emission[J]. Physics Review Letter, 2002, 89:213902. doi: 10.1103/PhysRevLett.89.213902
    [6] SILVEIRINHA M, ENGHETA N. Tunneling of Electromagnetic energy through subwavelength channels and bends using-near-zero materials[J]. Physics Review Letter, 2006, 97:157403. doi: 10.1103/PhysRevLett.97.157403
    [7] LIU R, CHENG Q, HAND T, et al.. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies[J]. Physics Review Letter, 2008, 100:023903. doi: 10.1103/PhysRevLett.100.023903
    [8] ZHANG B, LUO Y, LIU X, et al.. Macroscopic invisibility cloak for visible light[J]. Physics Review Letter, 2011; 106:033901. doi: 10.1103/PhysRevLett.106.033901
    [9] CHEN X, LUO Y, ZHANG J, et al.. Macroscopic invisibility cloaking of visible light[J]. Nature Communication, 2011, 2:176. doi: 10.1038/ncomms1176
    [10] CHENG Q, JIANG W X, CUI T J. Spatial power combination for omnidirectional radiation via anisotropic metamaterials[J]. Physics Review Letter, 2012, 108:213903. doi: 10.1103/PhysRevLett.108.213903
    [11] BLANCO A, CHOMSKI E, GRABTCHAK S, et al.. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres[J]. Nature, 2000, 405:437-440. doi: 10.1038/35013024
    [12] SAKODA K. Optical Properties of Photonic Crystals[M]. New York:Springer Science & Business Media, 2005.
    [13] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312:1780-1782. doi: 10.1126/science.1125907
    [14] LEONHARDT U. Optical conformal mapping[J]. Science, 2006, 312:1777-1780. doi: 10.1126/science.1126493
    [15] SCHURIG D, MOCK J J, JUSTICE B J, et al.. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314:977-980. doi: 10.1126/science.1133628
    [16] LI J, PENDRY J B. Hiding under the carpet:a new strategy for cloaking[J]. Physics Review Letter, 2008, 101:203901. doi: 10.1103/PhysRevLett.101.203901
    [17] LIU R, JI C, MOCK J J, et al.. Broadband ground-plane cloak[J]. Science, 2009, 323:366-369. doi: 10.1126/science.1166949
    [18] ERGIN T, STENGER N, BRENNER P, et al.. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328:337-339. doi: 10.1126/science.1186351
    [19] MA H F, CUI T J. Three-dimensional broadband ground-plane cloakmade of metamaterials[J]. Nature Communication, 2010, 1:21.
    [20] JIANG W X, CUI T J, CHENG Q, et al.. Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces[J]. Applied Physics Letter, 2008, 92:264101. doi: 10.1063/1.2951485
    [21] LAI Y, NG J, CHEN H, et al.. Illusion optics:the optical transformation of an object into another object[J]. Physics Review Letter, 2009, 102:253902. doi: 10.1103/PhysRevLett.102.253902
    [22] JIANG W X, CUI T J, YANG X M, et al.. Shrinking an arbitrary object as one desires using metamaterials[J]. Applied Physics Letter, 2011, 98:204101. doi: 10.1063/1.3590203
    [23] KUNDTZ N, SMITH D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 2010, 9:129132.
    [24] MA H F, CUI T J. Three-dimensional broadband ground-plane cloakmade of metamaterials[J]. Nature Communication, 2010, 1:21.
    [25] SMITH D R, MOCK J J, STARR A F, et al.. Gradient index metamaterials[J]. Physics Review E, 2005, 71:036609. doi: 10.1103/PhysRevE.71.036609
    [26] HAO Y, MITTRA R. FDTD Modeling of Metamaterials:Theory and Applications[M]. Boston:Artech House, 2009.
    [27] CHEN X, M A HF, ZOU X Y, et al.. Three-dimensional broadband and highdirectivity lens antenna made of metamaterials[J]. J. Applied Physics, 2011, 110:044904. doi: 10.1063/1.3622596
    [28] LIER E, WERNER D H, SCARBOROUGH C P, et al.. An octave-bandwidth negligible-loss radiofrequency metamaterial[J]. Nature Materials, 2011, 10:216-222. doi: 10.1038/nmat2950
    [29] JIANG W X, QIU C W, HAN T C, et al.. Broadband all-dielectric magnifying lens for far-field high-resolution imaging[J]. Advanced Materials, 2013, 25:6963-6968. doi: 10.1002/adma.v25.48
    [30] YANG X M, ZHOU X Y, CHENG Q, et al.. Diffuse reflections by randomly gradient index metamaterials[J]. Optics Letter, 2010, 35:808-810. doi: 10.1364/OL.35.000808
    [31] SILVA A, MONTICONE F, CASTALDI G, et al.. Performing mathematical operations with metamaterials[J]. Science, 2014, 343:160-163. doi: 10.1126/science.1242818
    [32] YU N, GENEVET P, KATS M A, et al.. Light propagation with phasediscontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334:333-337. doi: 10.1126/science.1210713
    [33] NI X, EMANI N K, KILDISHEV A V, et al.. Broadband light bending with plasmonicnanoantennas[J]. Science, 2012, 335:427. doi: 10.1126/science.1214686
    [34] SUN S, HE Q, XIAO S, et al.. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11:426-431. doi: 10.1038/nmat3292
    [35] YIN X, YE Z, RHO J, et al.. Photonic spin hall effect at metasurfaces[J]. Science, 2013, 339:1405-1407. doi: 10.1126/science.1231758
    [36] LIN J, MUELLER J P, WANG Q, et al.. Polarization-controlled tunable directional coupling of surface plasmonpolaritons[J]. Science, 2013, 340:331-334. doi: 10.1126/science.1233746
    [37] MIROSHNICHENKO A E, KIVSHAR Y S. Polarization traffic control for surface plasmons[J]. Science, 2013, 340:283-284. doi: 10.1126/science.1236154
    [38] GRADY N K, HEYES J E, CHOWDHURY D R, et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340:1304-1307. doi: 10.1126/science.1235399
    [39] QU C, MA S J, HAO J M, et al.. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters, 2015, 115(23):235503. doi: 10.1103/PhysRevLett.115.235503
    [40] CUI T J, QI M Q, WAN X, et al.. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science & Application, 2014, 3:e218.
    [41] ZHU B O, ZHAO J M, FENG Y J. Active impedance metasurface with full 360 reflection phase tuning[J]. Scientific Reports, 2013, 3:3059.
    [42] MIAO Z, WU Q, LI X, et al.. Widely tunable terahertz phase modulation with gate-controlled graphenemetasurfaces[J]. Physical Review X, 2015, 5(4):041027. doi: 10.1103/PhysRevX.5.041027
    [43] WAN X, QI M Q, CHEN T Y, et al.. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface[J]. Scientific Reports, 2016, 6:20663. doi: 10.1038/srep20663
    [44] XU H X, SUN S, TANG S, et al.. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J]. Scientific Reports, 2016, 6:27503. doi: 10.1038/srep27503
    [45] GIOVAMPAOLA C D, ENGHETA N. Digital metamaterials[J]. Nature Materials, 2014, 14:1115-1121.
    [46] GAO L H, CHENG Q, YANG J, et al.. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light:Science & Application, 2015, 4:e324.
    [47] LIU S, CUI T J, XU Q, et al.. Anisotropic coding metamaterials and their powerful manipulation to differently polarized terahertz waves[J]. Light:Science & Application, 2015, 5:e16076.
    [48] PAQUAY M, IRIARTE JC, EDERRA I, et al.. Thin AMC structure for radar cross-section reduction[J]. IEEE Transactions on Antennas and Propagation, 2007, 55:3630-3638. doi: 10.1109/TAP.2007.910306
    [49] MAIT J N. Design of binary-phase and multiphase Fourier gratings for array generation[J]. J. Optical Society of America A, 1990, 7:1514-1528. doi: 10.1364/JOSAA.7.001514
    [50] WANG M R, SU H. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication[J]. Applied Optics, 1998, 37:7568-7576. doi: 10.1364/AO.37.007568
    [51] COOMBER S D, CAMERON C D, HUGHES J R, et al.. Optically addressed spatial light modulators for replaying computer-generated holograms[J]. Proc SPIE, 2001, 4457:9-19. doi: 10.1117/12.447756
    [52] WATTS C M, SHREKENHAMER D, MONTOYA J, et al.. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8(8):605-609. doi: 10.1038/nphoton.2014.139
    [53] SHREKENHAMER D, MONTOYA J, KRISHNA S, et al.. Four-color metamaterial absorber THz spatial light modulator[J]. Advanced Optical Materials, 2013, 1(12):905-909. doi: 10.1002/adom.v1.12
    [54] SAVO S, SHREKENHAMER D, PADILLA W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications[J]. Advanced Optical Materials, 2014, 2:275-279. doi: 10.1002/adom.v2.3
    [55] CHAN W L, CHEN H T, TAYLOR A J, et al.. A spatial light modulator for terahertz beams[J]. Applied Physics Letter, 2009, 94:213511. doi: 10.1063/1.3147221
    [56] KARL N, REICHEL K, CHEN H T, et al.. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range[J]. Applied Physics Letter, 2014, 104:091115. doi: 10.1063/1.4867276
    [57] MAXFIELD C. The Design Warrior's Guide to FPGAs:Devices, Tools and Flows[M]. Oxford:Elsevier, 2004.
    [58] LANDY N I, SAJUYIGBE S, MOCK J J, et al.. Perfect metamaterial absorber[J]. Physics Review Letter, 2008, 100:207402. doi: 10.1103/PhysRevLett.100.207402
    [59] CHEN H T, ZHOU J, O'HARA J F, et al.. Antireflection coating using metamaterials and identification of its mechanism[J]. Physics Review Letter, 2010, 105:073901. doi: 10.1103/PhysRevLett.105.073901
  • 加载中
图(16)
计量
  • 文章访问数:  3531
  • HTML全文浏览量:  837
  • PDF下载量:  1559
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-14
  • 修回日期:  2016-09-27
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回