留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用3D打印技术制备太赫兹器件

杨晶 龚诚 赵佳宇 田浩琳 孙陆 陈平 林列 刘伟伟

杨晶, 龚诚, 赵佳宇, 田浩琳, 孙陆, 陈平, 林列, 刘伟伟. 利用3D打印技术制备太赫兹器件[J]. 中国光学, 2017, 10(1): 77-85. doi: 10.3788/CO.20171001.0077
引用本文: 杨晶, 龚诚, 赵佳宇, 田浩琳, 孙陆, 陈平, 林列, 刘伟伟. 利用3D打印技术制备太赫兹器件[J]. 中国光学, 2017, 10(1): 77-85. doi: 10.3788/CO.20171001.0077
YANG Jing, GONG Cheng, ZHAO Jia-yu, TIAN Hao-lin, SUN Lu, CHEN Ping, LIN Lie, LIU Wei-wei. Fabrication of terahertz device by 3D printing technology[J]. Chinese Optics, 2017, 10(1): 77-85. doi: 10.3788/CO.20171001.0077
Citation: YANG Jing, GONG Cheng, ZHAO Jia-yu, TIAN Hao-lin, SUN Lu, CHEN Ping, LIN Lie, LIU Wei-wei. Fabrication of terahertz device by 3D printing technology[J]. Chinese Optics, 2017, 10(1): 77-85. doi: 10.3788/CO.20171001.0077

利用3D打印技术制备太赫兹器件

doi: 10.3788/CO.20171001.0077
基金项目: 

国家重点基础研究发展规划资助项目 2014CB339802

国家自然科学基金资助项目 11574160

天津市应用基础与前沿科技研究计划资助项目 15JCZDJC31700

国家青年科学基金资助项目 61505087

详细信息
    作者简介:

    杨晶(1990-), 女, 江苏淮安人, 博士研究生, 2012年于南京信息工程大学获得学士学位, 主要从事太赫兹光谱分析方面的研究。E-mail:yangjingxqq@126.com

    通讯作者:

    刘伟伟(1976-),男,江苏淮安人,博士,教授,博士生导师,2005年于加拿大拉瓦尔大学获得博士学位,主要从事超快光子与光谱成像方面的研究。刘伟伟, E-mail:liuweiwei@nankai.edu.cn

  • 中图分类号: TP305;O441

Fabrication of terahertz device by 3D printing technology

Funds: 

Supported by National Basic Research Program of China 2014CB339802

National Natural Science Foundation of China 11574160

Tianjin Research Program of Application Foundation and Advanced Technology 15JCZDJC31700

National Science Foundation for Young Scientists of China 61505087

More Information
  • 摘要: 高性能的太赫兹器件在控制太赫兹波方面起到重要的作用,因此寻求一种简单有效的太赫兹器件加工方案非常必要。本文以太赫兹波导和太赫兹滤波器为例,分别选用Kagome型光子晶体结构的波导和一维光子晶体结构的滤波器,运用商用的3D打印机加工样品,并采用透射式太赫兹时域光谱系统对样品的参数进行测量。实验结果表明:加工的波导在0.2~1.0 THz范围内传输损耗平均值约为0.02 cm-1,最小值可达到0.002 cm-1,且可运用机械拼接的方式将多个波导进行简单的连接从而获得更长的波导而不引起严重的损耗;滤波器的透射谱在0.1~0.5 THz之间有两个明显高损耗带;这两组实验结果均与理论预计非常接近。本文运用太赫兹波导和滤波器的实例证实了3D打印技术加工太赫兹器件的可行性,将会成为获取性能可控、价格低廉的太赫兹器件的有效途径。
  • 图  1  太赫兹时域光谱系统的结构示意图

    Figure  1.  Schematic of THz-TDS setup

    图  2  3D打印所用聚合物的材料参数

    Figure  2.  Characteristics of polymer used in 3D printing

    图  3  太赫兹波导的设计和制备测量系统原理图

    Figure  3.  Principle diagram of THz waveguide design and fabrication

    图  4  太赫兹波导的性能

    Figure  4.  Characteristics of THz waveguide

    图  5  模拟的纤芯基模模场分布

    Figure  5.  Simulated core fundamental mode distributions

    图  6  拼接波导的性能测试

    Figure  6.  Spliced waveguide characteristics

    图  7  理想滤波器横截面结构示意图

    Figure  7.  Cross section of the ideal filter design

    图  8  太赫兹滤波器样品及其透射谱

    Figure  8.  THz filter fabrication and characteristics

  • [1] IMESHEV G, FERMANN M E, VODOPYANOV K L, et al.. High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser[J]. Optics Express, 2006, 14(10):4439-4444. doi: 10.1364/OE.14.004439
    [2] SHI W, HOU L, LIU Z, et al.. Terahertz generation from SI-GaAs stripline antenna with different structural parameters[J]. J. Optical Society of America B, 2009, 26(9):A107-A112. doi: 10.1364/JOSAB.26.00A107
    [3] TANG M, MINAMIDE M, WANG Y, et al.. Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation[J]. Optics Letters, 2010, 35(10):1698-1700. doi: 10.1364/OL.35.001698
    [4] CAI Y, BRENER I, LOPATA J, et al.. Coherent terahertz radiation detection:direct comparison between free-space electro-optic sampling and antenna detection[J]. Applied Physics Letters, 1998, 73(4):444-446. doi: 10.1063/1.121894
    [5] KARPOWICZ N E, CHEN J, TONGUE T, et al.. Coherent millimeter wave to mid-infrared measurements with continuous bandwidth reaching 40 THz[J]. Electronics Letters, 2008, 44(8):544-545. doi: 10.1049/el:20080356
    [6] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2):97-105. doi: 10.1038/nphoton.2007.3
    [7] ABBOTT D, ZHANG X C. Scanning the issue:T-Ray imaging, sensing, and retection[J]. Proc. IEEE, 2007, 95(8):1509-1513 doi: 10.1109/JPROC.2007.900894
    [8] 于磊, 文春华.基于3D打印的THz波导成型技术研究进展[J].微波学报, 2015, 3:61-64. http://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2015S1017.htm

    YU L, WEN CH H. Research advance of prototyping of terahertz waveguides based on 3D printing[J]. J. Microwaves, 2015, 3:61-64.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2015S1017.htm
    [9] KODAMA H. Automatic method for fabricating a 3-dimensional plastic model with photo-hardening polymer[J]. Review of Scientific Instruments, 1981, 52(11):1770-1773. doi: 10.1063/1.1136492
    [10] SACHS E, CIMA M, WILLIAMS P, et al.. 3-Dimensional printing-rapid tooling and prototypes directly from a CAD model[J]. ASME J. Engineering for Industry, 1992, 114(4):481-488. doi: 10.1115/1.2900701
    [11] 张敏, 刘畅, 任博, 等.3D打印激光制备多孔镍合金组织和力学性能研究[J].中国光学, 2016, 9(3):335-341. doi: 10.3788/co.

    ZHANG M, LIU C, REN B, et al.. Microstructure and mechanical properties of porous Ni alloy fabricated by laser 3D printing[J]. Chinese Optics, 2016, 9(3):335-341.(in Chinese) doi: 10.3788/co.
    [12] BUSCH S, WEIDENBACHE M, FEY M, et al.. Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics[J]. J. Infrared, Millimeter, Terahertz Waves, 2014, 35(12):993-997. doi: 10.1007/s10762-014-0113-9
    [13] SQUIRES A, CONSTABLE E, LEWIS R. 3D printed terahertz diffraction gratings and lenses[J]. J. Infrared, Millimeter, Terahertz Waves, 2015, 36(1):72-80. doi: 10.1007/s10762-014-0122-8
    [14] WEI X, LIU C, ZHANG Z, et al.. Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates[J]. SPIE, 2014, 9275:92751P-8. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1935521
    [15] PANDEY S, GUPTA B, NAHATA A. Terahertz plasmonic waveguides created via 3D printing[J]. Optics Express, 2013, 21(21):24422-24430. doi: 10.1364/OE.21.024422
    [16] YUDASARI N, ANTHONY J, LEONHARDT R. Terahertz pulse propagation in 3D-printed waveguide with metal wires component[J]. Optics Express, 2014, 22(21):26042-26054. doi: 10.1364/OE.22.026042
    [17] VOGT D W, ANTHONY J, LEONHARDT R. Metallic and 3D-printed dielectric helical terahertz waveguides[J]. Optics Express, 2015, 23(26):33359-33369. doi: 10.1364/OE.23.033359
    [18] WU Z, NG. W, GEHM M, et al.. Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping[J]. Optics Express, 2011, 19(5):3962-3972. doi: 10.1364/OE.19.003962
    [19] MONRO T M, RICHARDSON D J, BENNETT P J. Developing holey fibers for evanescent field devices[J]. Electronics Letters, 1999, 35(14):1188-1189. doi: 10.1049/el:19990780
    [20] FINI J M. Microstructure fibres for optical sensing in gases and liquids[J]. Measurement Science and Technology, 2004, 15(6), 1120-1128. doi: 10.1088/0957-0233/15/6/011
    [21] ARGYROS A, VAN EIJKELENBORG M A, LARGE M C J, et al.. Hollow-core microstructure polymer optical fiber[J]. Optics Letters, 2006, 31(2):172-174. doi: 10.1364/OL.31.000172
    [22] COX F M, ARGROS A, LARGE M C J. Liquid-filled hollow core microstructured polymer optical fiber[J]. Optics Express, 2006, 14(9):4135-4140. doi: 10.1364/OE.14.004135
    [23] ANTHONY J, LEONHARDT R, LEON-SAVAL S G, et al.. THz propagation in Kagome hollow-core microstructured fibers[J]. Optics Express, 2011, 19(19):18470-18478. doi: 10.1364/OE.19.018470
    [24] SETTI V, VINCETTI L, ARGYROS A. Flexible tube lattice fibers for terahertz applications[J]. Optics Express, 2013, 21(3):3388-3399. doi: 10.1364/OE.21.003388
    [25] LAI C H, YOU B, LU J Y, et al.. Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding[J]. Optics Express, 2010, 18(1):309-322. doi: 10.1364/OE.18.000309
    [26] WANG K, MITTLEMAN D M. Metal wires for terahertz wave guiding[J]. Nature, 2004, 432(7015):376-379. doi: 10.1038/nature03040
    [27] NORDQUIST C D, WANKE M C, ROWEN A M, et al.. Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz[C]. IEEE AP-S Int. Symp., San Diego, CA, USA:2008:1-4.
    [28] GOTO M, QUEMA A, TAKAHASHI H, et al.. Teflon photonic crystal fiber as Terahertz waveguide[J]. Japanese J. Applied Physics, 2004, 43:L317-L319. doi: 10.1143/JJAP.43.L317
    [29] WU Z, KINAST J, GEHM M E, et al.. Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures[J]. Optics Express, 2008, 16(21):16442-16451. doi: 10.1364/OE.16.016442
    [30] HE J, LIU P, HE Y, et al.. Narrow bandpass tunable terahertz filter based on photonic crystal cavity[J]. Applied Optics, 2012, 51(6):776-779 doi: 10.1364/AO.51.000776
    [31] TURCHINOVICH D, KAMMOUN A, KNOBLOCH P, et al.. Flexible all-plastic mirrors for the THz range[J]. Applied Physics A, 2002, 74(2):291-293. doi: 10.1007/s003390101036
    [32] WITHAYACHUMNANKUL W, FISCHER B M, ABBOTT D. Quarter-wavelength multilayer interference filter for terahertz waves[J]. Optics Communications, 2008, 281(9):2374-2379. doi: 10.1016/j.optcom.2007.12.094
    [33] XU J, CHEN L, ZANG X, et al.. Triple-channel terahertz filter based on mode coupling of cavities resonance system[J]. Applied Physics Letters, 2013, 103(16):161116. doi: 10.1063/1.4826456
    [34] 董莘, 赵寒梅, 吴冈."打印-加工"一体式3D打印技术的研究[J].行业应用与交流, 2015, 34(12):98-105. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ201512022.htm

    DONG S, ZHAO H M, WU G. Study of 3D print technology in "3D print-cuting process" combining[J]. Industrial Applications and Communications, 2015, 34(12):98-105.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ201512022.htm
    [35] JIN Y S, KIM G, JEON S G. Terahertz dielectric properties of polymers[J]. J. Korean Physical Society, 2006, 49(2):513-517. https://www.researchgate.net/publication/280018171_Terahertz_dielectric_properties_of_polymers
    [36] YANG J, HE S, ZHAO J, et al.. Polarization-dependent optimization of fiber-coupled terahertz time-domain spectroscopy system[J]. J. Electronic Science and Technology, 2015, 13(1):2-5. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKE201501002.htm
    [37] ZHAO J, ZHANG Y, WANG Z, et al.. Propagation of terahertz wave inside femtosecond laser filament in air[J]. Laser Physics Letters, 2014, 11(9):095302. doi: 10.1088/1612-2011/11/9/095302
    [38] CHEN J, CHEN Y, ZHAO H, et al.. Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz[J]. Optics Experess, 2007, 15(19):12060-12067. doi: 10.1364/OE.15.012060
    [39] YANG J, YANG B, WANG Z, et al.. Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers[J]. Optics Communications, 2015, 343(15):150-156. https://www.researchgate.net/profile/Weiwei_Liu27/publication/272964358_Design_of_the_low-loss_wide_bandwidth_hollow-core_terahertz_inhibited_coupling_fibers/links/553dcf400cf2c415bb0f7868.pdf?origin=publication_detail
    [40] YANG J, ZHAO J, GONG C, et al.. 3D printed low-loss THz waveguide based on Kagome photonic crystal structure[J]. Optics Experess, 2016, 24(20):22454-22460. doi: 10.1364/OE.24.022454
    [41] YABLANS A D. Optical Fiber Fusion Splicing[M]. Heidelberg:Springer-Verilog Press, 2005.
    [42] LITCHINITSER N M, ABEELUCK A K, HEADLEY C, et al.. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 2002, 27:1592-1594. doi: 10.1364/OL.27.001592
  • 加载中
图(8)
计量
  • 文章访问数:  1060
  • HTML全文浏览量:  304
  • PDF下载量:  557
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-12
  • 修回日期:  2016-10-11
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回