留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯太赫兹波动态调制的研究进展

陈勰宇 田震

陈勰宇, 田震. 石墨烯太赫兹波动态调制的研究进展[J]. 中国光学(中英文), 2017, 10(1): 86-97. doi: 10.3788/CO.20171001.0086
引用本文: 陈勰宇, 田震. 石墨烯太赫兹波动态调制的研究进展[J]. 中国光学(中英文), 2017, 10(1): 86-97. doi: 10.3788/CO.20171001.0086
CHEN Xie-yu, TIAN Zhen. Recent progress in terahertz dynamic modulation based on graphene[J]. Chinese Optics, 2017, 10(1): 86-97. doi: 10.3788/CO.20171001.0086
Citation: CHEN Xie-yu, TIAN Zhen. Recent progress in terahertz dynamic modulation based on graphene[J]. Chinese Optics, 2017, 10(1): 86-97. doi: 10.3788/CO.20171001.0086

石墨烯太赫兹波动态调制的研究进展

基金项目: 

国家重点基础研究发展计划(973计划)资助项目 2014CB339800

国家自然科学基金资助项目 61427814

国家自然科学基金资助项目 61138001

国家自然科学基金资助项目 61422509

详细信息
    作者简介:

    陈勰宇(1993-), 男, 辽宁阜新人, 硕士研究生, 主要从事石墨烯与太赫兹波相互作用的研究。E-mail:chenxieyu@tju.edu.cn

    通讯作者:

    田震(1981-),男,河北沧州人,博士,副教授,硕士生导师,主要从事太赫兹科学与技术、光与物质相互作用和人工电磁微结构方面的研究,E-mail:tianzhen@tju.edu.cn

  • 中图分类号: O439

Recent progress in terahertz dynamic modulation based on graphene

Funds: 

Supported by National Program on Key Basic Research Projects of China 2014CB339800

National Natural Science Foundation of China 61427814

National Natural Science Foundation of China 61138001

National Natural Science Foundation of China 61422509

More Information
  • 摘要: 石墨烯是一种有着独特电学和光学性质的二维材料,近年来在太赫兹波动态调制的研究中有着广泛的应用。本文主要对基于石墨烯的太赫兹波动态调制器件进行了综述,分析了电调制、光调制和光电混合调制3种调制方法的原理和优缺点,介绍了近几年来将石墨烯应用于太赫兹波动态调制所取得的一系列科研成果,着重对不同器件的调制性能进行了对比,分析了优势和不足。石墨烯可调超材料为实现更快速、高效的太赫兹调制器件提供了新的思路。

     

  • 图 1  石墨烯的能带结构

    Figure 1.  Band structure of graphene

    图 2  石墨烯不同费米能级示意图

    Figure 2.  Schematic diagram of graphene Fermi energy level

    图 3  Sensale-Rodriguez制备的石墨烯太赫兹电调制器件

    Figure 3.  Graphene terahertz electrical modulator fabricated by Sensale-Rodriguez

    图 4  基于离子凝胶电调制的石墨烯太赫兹调制器

    Figure 4.  Graphene terahertz modulators by ionic liquid gating

    图 5  Weilu Gao等人制备的石墨烯太赫兹调制器

    Figure 5.  Graphene terahertz electrical modulator fabricated by Weilu Gao

    图 6  S.F.Shi等制备的石墨烯太赫兹调制器

    Figure 6.  Graphene terahertz electrical modulator fabricated by S.F.Shi

    图 7  Peter Weis等制备的石墨烯太赫兹调制器

    Figure 7.  Graphene terahertz optical modulator fabricated by Peter Weis

    图 8  Quan Li等人制备的石墨烯太赫兹调制器

    Figure 8.  Graphene terahertz optical modulator fabricated by Quan Li et al.

    图 9  基于石墨烯表面等离激元的太赫兹调制器件

    Figure 9.  Graphene surface plasmons based terahertz modulator

  • [1] FERGUSON B, ZHANG X C. Materials for terahertz science and technology[J]. Nature Mater, 2002, 1:26-33. doi: 10.1038/nmat708
    [2] SCHEMUTTENMAER C A. Exploring dynamics in the far-infrared with terahertz spectroscopy[J]. Chem. Rev., 2004, 104:1759-1779. doi: 10.1021/cr020685g
    [3] HANGYO M, et al.. Terahertz time-domain spectroscopy of solids:a review[J]. International J. infrared and Millimeter Waves, 2006, 12:1661-1690. http://www.docin.com/p-1016688179.html
    [4] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photo., 2007, 1:97-105. doi: 10.1038/nphoton.2007.3
    [5] 蔡禾, 郭雪娇, 和挺, 等.太赫兹技术及其应用研究进展[J].中国光学与应用光学, 2010, 3(3):209-222. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201003005.htm

    CAI H, GUO X J, HE T, et al.. Terahertz wave and its new applications[J]. Chinese J. Optics and Applied Optics, 2010, 3(3):209-222.(in chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201003005.htm
    [6] 许景周, 张希成.太赫兹科学技术和应用[M].北京:北京大学出版社, 2007.

    XU J ZH, ZHANG X CH. Terahertz Science Technology and Applications[M]. Beijing:Peking University Press, 2007.
    [7] LI Q, ZHANG X, CAO W, et al.. An approach for mechanically tunable, dynamic terahertz bandstop filters[J]. Applied Physics A, 2012, 107(2):285-291. https://www.researchgate.net/publication/256693257_An_approach_for_mechanically_tunable_dynamic_terahertz_bandstop_filters
    [8] CHIANG Y J, YEN T J. A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission[J]. Applied Physics Letters, 2013, 102(1):011129. doi: 10.1063/1.4774300
    [9] WEN X, ZHENG J. Broadband THz reflective polarization rotator by multiple plasmon resonances[J]. Optics Express, 2014, 22(23):28292-28300. doi: 10.1364/OE.22.028292
    [10] 张检发, 袁晓东, 秦石乔.可调太赫兹与光学超材料[J].中国光学, 2014, 7(3):349-364. http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml

    ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3):349-364.(in chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml
    [11] ZHELUDEV NI, KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11):917-924. doi: 10.1038/nmat3431
    [12] FU Y H, LIU A Q, ZHU W M, et al.. A Micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators[J]. Advanced Functional Materials, 2011, 21(18):3589-3594. doi: 10.1002/adfm.201101087
    [13] SU X, OUYANG C, XU N, et al.. Active metasurface terahertz deflector with phase discontinuities[J]. Optics Express, 2015, 23(21):27152-27158. doi: 10.1364/OE.23.027152
    [14] SU X, OUYANG C, XU N, et al.. Broadband terahertz transparency in a switchable metasurface[J]. IEEE Photonics J., 2015, 7(1):1-8. http://www.docin.com/p-1467191395.html
    [15] SENSALE-RODRIGUEZ B, FANG T, YAN R, et al.. Unique prospects for graphene-based terahertz modulators[J]. Applied Physics Letters, 2011, 99(11):113104. doi: 10.1063/1.3636435
    [16] ZHANG Y, FENG Y, ZHU B, et al.. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency[J]. Optics Express, 2014, 22(19):22743-22752. doi: 10.1364/OE.22.022743
    [17] ANDRYIEUSKI A, LAVRINENKO A V. Graphene metamaterials based tunable terahertz absorber:effective surface conductivity approach[J]. Optics Express, 2013, 21(7):9144-9155. doi: 10.1364/OE.21.009144
    [18] ZHANG Y, TAN Y W, STORMER H L, et al.. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065):201-204. doi: 10.1038/nature04235
    [19] MAK K F, SFEIR M Y, WU Y, et al.. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 2008, 101(19):196405. doi: 10.1103/PhysRevLett.101.196405
    [20] GEIM A K. Graphene:status and prospects[J]. Science, 2009, 324(5934):1530-1534. doi: 10.1126/science.1158877
    [21] CHEN P Y, AL A. Terahertz metamaterial devices based on graphene nanostructures[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6):748-756. doi: 10.1109/TTHZ.2013.2285629
    [22] SENSALE-RODRIGUEZ B, YAN R, RAFIQUE S, et al.. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators[J]. Nano Letters, 2012, 12(9):4518-4522. doi: 10.1021/nl3016329
    [23] SENSALE-RODRIGUEZ B, YAN R, KELLY M M, et al.. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 2012, 3:780. doi: 10.1038/ncomms1787
    [24] WU Y, LAOVORAKIAT C, QIU X, et al.. Graphene Terahertz modulators by ionic liquid gating[J]. Advanced Materials, 2015, 27(11):1874-1879. doi: 10.1002/adma.v27.11
    [25] KAKENOV N, TAKAN T, OZKAN V A, et al.. Graphene-enabled electrically controlled terahertz spatial light modulators[J]. Optics Letters, 2015, 40(9):1984-1987. doi: 10.1364/OL.40.001984
    [26] DEGL'INNOCENTI R, JESSOP D S, SHAH Y D, et al.. Low-bias terahertz amplitude modulator based on split-ring resonators and graphene[J]. ACS Nano, 2014, 8(3):2548-2554. doi: 10.1021/nn406136c
    [27] VALMORRA F, SCALARI G, MAISSEN C, et al.. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial[J]. Nano Letters, 2013, 13(7):3193-3198. doi: 10.1021/nl4012547
    [28] HE X, LI T, WANG L, et al.. Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene[J]. J. Applied Physics, 2014, 115(17):17B903. doi: 10.1063/1.4866079
    [29] LEE S H, CHOI M, KIM T T, et al.. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials, 2012, 11(11):936-941. doi: 10.1038/nmat3433
    [30] GAO W, SHU J, REICHEL K, et al.. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures[J]. Nano Letters, 2014, 14(3):1242-1248. doi: 10.1021/nl4041274
    [31] HI S F, ZENG B, HAN H L, et al.. Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures[J]. Nano Letters, 2014, 15(1):372-377. https://www.researchgate.net/publication/269284684_Optimizing_Broadband_Terahertz_Modulation_with_Hybrid_GrapheneMetasurface_Structures
    [32] CHEN C F, PARK C H, BOUDOURIS B W, et al.. Controlling inelastic light scattering quantum pathways in graphene[J]. Nature, 2011, 471(7340):617-620. doi: 10.1038/nature09866
    [33] SHI S F, TANG T T, ZENG B, et al.. Controlling graphene ultrafast hot carrier response from metal-like to semiconductor-like by electrostatic gating[J]. Nano Letters, 2014, 14(3):1578-1582. doi: 10.1021/nl404826r
    [34] LIANG G, HU X, YU X, et al.. Integrated Terahertz graphene modulator with 100% modulation depth[J]. ACS Photonics, 2015, 2(11):1559-1566. doi: 10.1021/acsphotonics.5b00317
    [35] SHI F, CHEN Y, HAN P, et al.. Broadband, spectrally flat, graphene-based terahertz modulators[J]. Small, 2015, 11(45):6044-6050. doi: 10.1002/smll.201502036
    [36] MAO Q, WEN Q Y, TIAN W, et al.. High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors[J]. Optics Letters, 2014, 39(19):5649-5652. doi: 10.1364/OL.39.005649
    [37] WEIS P, GARCIA-POMAR J L, HO H M, et al.. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 2012, 6(10):9118-9124. doi: 10.1021/nn303392s
    [38] WEN Q Y, TIAN W, MAO Q, et al.. Graphene based all-optical spatial terahertz modulator[J]. Scientific Reports, 2014, 4. https://www.researchgate.net/profile/Weiwei_Liu27/publication/269415410_Graphene_based_All-Optical_Spatial_Terahertz_Modulator/links/54e3dbe00cf2dbf60694a657.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
    [39] LI Q, TIAN Z, ZHANG X, et al.. Dual control of active graphene silicon hybrid metamaterial devices[J]. Carbon, 2015, 90:146-153. doi: 10.1016/j.carbon.2015.04.015
    [40] LI Q, TIAN Z, ZHANG X, et al.. Active graphene-silicon hybrid diode for terahertz waves[J]. Nature Communications, 2015, 6. http://terahertz.tju.edu.cn/paper/paper114.pdf
    [41] JIANG R, HAN Z, SUN W, et al.. Ferroelectric modulation of terahertz waves with graphene/ultrathin-Si:HfO2/Si structures[J]. Applied Physics Letters, 2015, 107(15):151105. doi: 10.1063/1.4933275
    [42] LOW T, AVOURIS P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 2014, 8(2):1086-1101. doi: 10.1021/nn406627u
    [43] YAN H, LOW T, ZHU W, et al.. Damping pathways of mid-infrared plasmons in graphene nanostructures[J]. Nature Photonics, 2013, 7(5):394-399. doi: 10.1038/nphoton.2013.57
    [44] YAN H, LI X, CHANDRA B, et al.. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5):330-334. doi: 10.1038/nnano.2012.59
    [45] JU L, GENG B, HORNG J, et al.. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10):630-634. doi: 10.1038/nnano.2011.146
    [46] LIU P Q, LUXMOORE I J, MIKHAILOV S A, et al.. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons[J]. Nature Communications, 2015, 6. https://www.researchgate.net/publication/271218382_Highly_tunable_hybrid_metamaterials_employing_split-ring_resonators_strongly_coupled_to_graphene_surface_plasmons?_sg=HNaDW7isyY04tlYM3chCmgZbYEL3sW1d5a7vYZooqP3KFgOn30GsFlTAT8RmgPRMJLOSnx-8A_5qEyYP91TChQ
    [47] HU X, WANG J. High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene[J]. Optics Letters, 2015, 40(23):5538-5541. doi: 10.1364/OL.40.005538
    [48] FARAJI M, MORAVVEJ-FARSHI M K, YOUSEFI L. Tunable THz perfect absorber using graphene-based metamaterials[J]. Optics Communications, 2015, 355:352-355. doi: 10.1016/j.optcom.2015.06.050
    [49] ZHU L, FAN Y, WU S, et al.. Electrical control of terahertz polarization by graphene microstructure[J]. Optics Communications, 2015, 346:120-123. doi: 10.1016/j.optcom.2015.02.032
    [50] YANG K, LIU S, AREZOOMANDAN S, et al.. Graphene-based tunable metamaterial terahertz filters[J]. Applied Physics Letters, 2014, 105(9):093105. doi: 10.1063/1.4894807
  • 加载中
图(9)
计量
  • 文章访问数:  2702
  • HTML全文浏览量:  824
  • PDF下载量:  826
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-13
  • 修回日期:  2016-10-20
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回