留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于智能移动设备的条纹反射法检测系统

冀翼 张学军 袁婷 陶小平

冀翼, 张学军, 袁婷, 陶小平. 用于智能移动设备的条纹反射法检测系统[J]. 中国光学(中英文), 2017, 10(2): 267-279. doi: 10.3788/CO.20171002.0267
引用本文: 冀翼, 张学军, 袁婷, 陶小平. 用于智能移动设备的条纹反射法检测系统[J]. 中国光学(中英文), 2017, 10(2): 267-279. doi: 10.3788/CO.20171002.0267
JI Yi, ZHANG Xue-jun, YUAN Ting, TAO Xiao-ping. Deflectometry measurement system for smart mobile devices[J]. Chinese Optics, 2017, 10(2): 267-279. doi: 10.3788/CO.20171002.0267
Citation: JI Yi, ZHANG Xue-jun, YUAN Ting, TAO Xiao-ping. Deflectometry measurement system for smart mobile devices[J]. Chinese Optics, 2017, 10(2): 267-279. doi: 10.3788/CO.20171002.0267

用于智能移动设备的条纹反射法检测系统

doi: 10.3788/CO.20171002.0267
基金项目: 

国家自然科学基金资助项目 61036015

详细信息
    作者简介:

    冀翼 (1992-):男, 黑龙江大庆人, 2013年于中国科学技术大学获得学士学位, 主要从事光学检测技术方面的研究。E-mail:jiyi4321@gmail.com

    通讯作者:

    张学军 (1968-):男, 吉林长春人, 博士, 研究员, 博士生导师, 主要从事大口径非球面加工与检测、新型空间反射镜制造、空间相机总体设计等方面的研究。E-mail:zxj@ciomp.ac.cn

  • 中图分类号: TH74

Deflectometry measurement system for smart mobile devices

Funds: 

National Natural Science Foundation of China 61036015

  • 摘要: 条纹反射法是一种结构简单的三维面形检测手段,本文对该方法在智能手机、平板等移动设备中的集成和应用进行了研究。首先,对条纹反射法标定误差以及智能设备的特点进行了分析。然后,在分析实际检测中的关键误差基础上,提出了通过相机非线性定标、改善相移算法、格点位置标定、应对相机自动增益调整等一系列方法和算法,在设备现有硬件条件下提高了测量精度和稳定性;最后,使用iPad Air对直径为105 mm的SiC反射面进行了实验。结果表明,标定精度在毫米量级时,对反射面的检测精度RMS值达到33 μm,并且以低频误差为主,在局部高频区域检测结果有明显优势,证实了在不使用其他外部设备前提下,集成于智能平板的条纹反射法具备几十微米量级精度的检测能力。

     

  • 图 1  典型条纹检测法原理

    Figure 1.  Schematic diagram of a typical deflectometry measurement

    图 2  SCOTS检测和Hartmann检测比较

    Figure 2.  Comparison of SCOTS and Hartmann test

    图 3  面形迭代计算流程图

    Figure 3.  Flowchart of surface shape iterative calculation

    图 4  误差仿真坐标系

    Figure 4.  Coordinate system of calibration error simulation

    图 5  相对角度测量误差仿真结果

    Figure 5.  Simulation result of relative angle measurement error

    图 6  反射镜沿z方向相对位置测量误差仿真

    Figure 6.  Simulation result of surface calibration error along z axis

    图 7  反射镜沿x方向相对位置测量误差仿真

    Figure 7.  Simulation result of surface calibration error along x axis

    图 8  几何关系示意图

    Figure 8.  Schematic diagram of geometric relations

    图 9  相位分布

    Figure 9.  Phase distribution

    图 10  中心线相位分布

    Figure 10.  Phase distribution on the center line

    图 11  设计用于非线性校正的标准图样

    Figure 11.  Designed pattern for camera nonlinear calibration

    图 12  对校准图样进行拍摄

    Figure 12.  Photograph of calibration pattern

    图 13  红绿蓝RGB三色直方图分布

    Figure 13.  RGB histogram distribution

    图 14  控制增益校准算法

    Figure 14.  AGC calibration algorithm

    图 15  iOS条纹反射法app运行流程图

    Figure 15.  Flowchart of iOS app for deflectometry

    图 16  相机与条纹距离物理位置示意图

    Figure 16.  Sketch of location between camera and fringe pattern

    图 17  SiC反射镜,表面有光学加工痕迹

    Figure 17.  SiC mirror with optical manufacturing signs on the surface

    图 18  确定待测镜面区域

    Figure 18.  Identity mirror area

    图 19  x, y方向相位包裹

    Figure 19.  Phase wrapping on the direction of x and y axis

    图 20  被加工区域对条纹产生弯折

    Figure 20.  Fringe deformation in the manufacturing area

    图 21  SiC反射镜检测结果

    Figure 21.  Testing result of the SiC mirror

    图 22  条纹反射法与三坐标测量结果对比

    Figure 22.  Comparison of testing result of deflectometry and coordinate measuring machine

  • [1] LIGTENBERG F K. The Moiré method-a new experimental method for the determination of moments in small slab models[J]. Proc. SESA, 1954, 12(2):83-98.
    [2] KNAUER M C, KAMINSKI J, HAUSLER G. Phase measuring deflectometry:a new approach to measure specular free-form surfaces[C]. Photonics Europe. International Society for Optics and Photonics, 2004:366-376.
    [3] ROSE P, SURREL Y, BECKER J M. Specific design requirements for a reliable slope and curvature measurement standard[J]. Measurement Science and Technology, 2009, 20(9):095110. doi: 10.1088/0957-0233/20/9/095110
    [4] 3D-Shape. A New Method to Measure Specular Free-Form Surfaces[EB/OL].[2016-06-08] http://www.3d-shape.com/produkte/pmd_e.php.
    [5] BOTHE T, LI W, VON KOPYLOW C, et al.. High-resolution 3D shape measurement on specular surfaces by fringe reflection[C]. Photonics Europe. International Society for Optics and Photonics, 2004:411-422.
    [6] SU P, PARKS R E, WANG L, et al.. Software configurable optical test system:a computerized reverse Hartmann test[J]. Applied Optics, 2010, 49(23):4404-4412. doi: 10.1364/AO.49.004404
    [7] HUANG R, SU P, HORNE T, et al.. Optical metrology of a large deformable aspherical mirror using software configurable optical test system[J]. Optical Engineering, 2014, 53(8):085106. doi: 10.1117/1.OE.53.8.085106
    [8] SU P, KHREISHI M A H, SU T, et al.. Aspheric and freeform surfaces metrology with software configurable optical test system:a computerized reverse Hartmann test[J]. Optical Engineering, 2014, 53(3):031305. https://www.deepdyve.com/lp/spie/aspheric-and-freeform-surfaces-metrology-with-software-configurable-U7EzNNMBf3
    [9] SU P, WANG S, KHREISHI M, et al.. SCOTS:a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments[J]. SPIE, 2012, 8450:84500W-9. https://www.researchgate.net/publication/258719485_SCOTS_A_reverse_Hartmann_test_with_high_dynamic_range_for_Giant_Magellan_Telescope_primary_mirror_segments
    [10] 赵文川, 范斌, 伍凡, 等.基于PMD的反射镜面检测实验分析[J].光学学报, 2013, 33(1):0112001. doi: 10.3788/AOS

    ZHAO W CH, FAN B, WU F, et al.. Experimental analysis of reflector test based on phase measuring deflectometry[J]. Acta Optica Sinica, 2013, 33(1):0112001.(in Chinese) doi: 10.3788/AOS
    [11] 唐燕, 苏显渝, 刘元坤, 等.基于条纹反射的非球面镜三维面形测量[J].光学学报, 2009, 29(4):965-969. doi: 10.3788/AOS

    YAN T, XIANYU S, YUANKUN L. Three-dimensional shape measurement of aspheric mirror based on fringe reflection[J]. Acta Optica Sinica, 2009, 29(4):965-969.(in Chinese) doi: 10.3788/AOS
    [12] 王华荣, 李彬, 王志峰, 等.基于条纹反射术的槽式抛物面单元镜面形测量[J].光学学报, 2013, 33(1):0112007. doi: 10.3788/AOS

    WANG H R, LI B, WANG ZH F, et al.. Surface measurement of parabolic trough unit mirror based on fringe reflection[J]. Acta Optica Sinica, 2013, 33(1):0112007.(in Chinese) doi: 10.3788/AOS
    [13] BUTEL G P, SMITH G A, BURGE J H. Deflectometry using portable devices[J]. Optical Engineering, 2015, 54(2):025111. doi: 10.1117/1.OE.54.2.025111
    [14] H USLER G, FABER C, OLESCH E, et al.. Deflectometry vs. interferometry[J]. SPIE, 2013, 8788:87881C-11. https://www.researchgate.net/publication/271480476_Deflectometry_vs_Interferometry
    [15] GOLDSTEIN R, ZEBKER H, WERNER C. Satellite radar interferometry:two-dimensional phase unwrapping[J]. Radio Science, 1988, 23(4):713-720. doi: 10.1029/RS023i004p00713
    [16] FLYNN T J. Consistent 2-D phase unwrapping guided by a quality map[C]. Geoscience and Remote Sensing Symposium, 1996. IGARSS'96, IEEE, 1996, 4:2057-2059.
    [17] 张旭, 朱利民.Gamma畸变的相位误差模型与Gamma标定技术[J].光学学报, 2012, 32(4):143-150. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201204025.htm

    ZHANG X, ZHU L M. Phase error model from Gamma distortion and Gamma calibration[J]. Acta Optica Sinica, 2012, 32(4):143-150.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201204025.htm
    [18] OHTSUBO J, FUJIMOTO A. Practical image encryption and decryption by phase-coding technique for optical security systems[J]. Applied Optics, 2002, 41(23):4848-4855. doi: 10.1364/AO.41.004848
    [19] AYUBI G A, DI MARTINO J M, ALONSO J R, et al.. Three-dimensional profiling with binary fringes using phase-shifting interferometry algorithms[J]. Applied Optics, 2011, 50(2):147-154. doi: 10.1364/AO.50.000147
    [20] IULIAN ROSU. Automatic Gain Control (AGC) in Receivers, [EB/OL].[2016-06-08]. http://www.qsl.net/va3iul/Files/Automatic_Gain_Control.pdf.
    [21] 陈立伟, 刘涌, 毕国堂, 等.双四步路径相移均值法[J].计算机应用, 2014, 34(6):1830-1833. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201406069.htm

    CHEN L W, LIU Y, BI G T, et al.. Double four-step route phase-shifting average algorithm[J]. J. Computer Applications, 2014, 34(6):1830-1833, 1838.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201406069.htm
    [22] YONG L, DINGFA H, YONG J. Flexible error-reduction method for shape measurement by temporal phase unwrapping:phase averaging method[J]. Applied Optics, 2012, 51(21):4945-4953. doi: 10.1364/AO.51.004945
  • 加载中
图(22)
计量
  • 文章访问数:  2004
  • HTML全文浏览量:  561
  • PDF下载量:  951
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-17
  • 修回日期:  2016-12-02
  • 刊出日期:  2017-04-01

目录

    /

    返回文章
    返回