Intelligent identification algorithm of adaptive feature drainage tube fault
-
摘要: 为了实现对高压输电线存在的故障隐患进行自动检测,本文提出了一种自适应特征引流管故障隐患智能识别算法。首先,分析了故障引流子的红外热图像特征,把故障分为两类:明显发热和微弱发热;其次,针对引流管所引起的明显发热,采用改进的Otsu阈值分割法对红外图像进行分割,运用改进的Sobel算子提取轮廓;第三,用种子填充算法分离连通域,通过Thread特征判断是否为故障引流管;最后,进入引流管所引起的微弱小区域发热识别,运用高压输电线平行特征寻找主干线区域,在主干线区域检测Harris角点,通过STWN特征判断是否为故障引流子。实验结果表明,发热隐患的识别率为94.6%,漏检率为2.2%,误识别率为5.5%。Abstract: In this paper, an intelligent recognition algorithm for hidden danger of drainage tube is presented in order to realize the automatic detection of the faults of the high voltage transmission line. First, the thermal image feature of faults is analyzed, and the faults can be divided into two types:obvious heating and weak heating. Second in view of the obvious heating caused by the drainage tube, the improved Ostu threshold segmentation method is used to implement infrared image segmentation and the improved Sobel operator is used to implment contour extraction. Third, the seed filling algorithm separation is used to connect domains, and we can determine whether the drainage tube is fault through the thread characteristics. Finally, we check the weak heating caused by the drainage tube, applying high pressure transmission line parallel features to find the region of trunk line, and then get the Harris corner around the trunk region and determine whether it is fault drainage through the STWN characteristics. Experimental results show that the successful identification rate of hidden heat fault is 94.6%, false negative rate is 2.2%, and false recognition rate is 5.5%.
-
表 1 92幅红外图像处理结果
Table 1. Processing results obtained from 92 infrared images
设备 总图片数量 故障数 正确检测到的故障数 误检率 漏检率 引流子 92 38 33(94.6%) 5.5% 2.2% -
[1] 陈韬. 直升机在输电线路运检工作中的技术研究[D]. 北京: 华北电力大学, 2010.CHEN T. Research on the technology of helicopter in the operation of transmission line inspection[D]. Beijing:North China Electric Power University, 2010.(in Chinese) [2] TANG W Y, HANG Y, QIU Q R, et al.. Overhead Power Line Detection from UAV Video Images[C]. 19th international conference on Mechatronics and Machine Vision in Practice. Auckland, New Zealand, 2012:74-79. [3] DU SH ZH, TU CH L. Power line inspection using segment measurement based on HT butterfly[C]. International Conference on Signal Processing, Communications and Computing. Xi'an, 2011:1-4. [4] 张来明, 郭劲, 杨贵龙, 等.中波红外激光技术最新进展[J].中国光学, 2013, 6(4):501-512. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201304010.htmZHANG L M, GUO J, YANG G L, et al.. The latest progress in mid infrared laser technology[J]. Chinese Optics, 2013, 6(4):501-512.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201304010.htm [5] 赵建川, 王弟男, 陈长青, 等.红外激光主动成像和识别[J].中国光学, 2013, 6(5):795-802. http://www.chineseoptics.net.cn/CN/abstract/abstract9066.shtmlZHAO J CH, WANG D N, CHEN C Q, et al.. Infrared laser active imaging and recognition[J]. Chinese Optics, 2013, 6(5):795-802.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9066.shtml [6] 唐攀龙. 高压输电线路绝缘子红外监测方法的研究[D]. 长沙: 长沙理工大学, 2009: 8-11.TANG P L. Research on infrared monitoring method of high voltage transmission line insulator[D]. Changsha:Changsha University of Science and Technology, 2009:8-11.(in Chinese) [7] 陈豪, 陈原, 赵雪松, 等.红外测温技术在复合绝缘子检测中的应用[J].电力设备, 2006, 7(9):42-43. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201408029.htmCHEN H, CHEN Y, ZHAO X S, et al.. Application of infrared temperature measurement technology in the detection of composite insulators[J]. Electric Power Equipment, 2006, 7(9):42-43.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201408029.htm [8] 王灿进, 石宁宁, 孙涛.同态非局部滤波在激光主动成像散斑抑制中的应用研究[J].液晶与显示, 2016, 31(2):193-200. http://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201602011.htmWANG C J, SHI N N, SUN T. Application of homomorphic non-local filters in speckle noise suppression for laser active imaging[J]. Chinese J. Liquid Crystals and Displays, 2016, 31(2):193-200.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201602011.htm [9] 黄富瑜, 沈学举, 刘旭敏, 等.基于空时域融合处理检测超大视场红外目标[J].光学精密工程, 2015, 23(8):2328-2338. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201508027.htmHUANG F Y, SHEN X J, LIU X M, et al.. Detection of super wide-field infrared target based on spatial-temporal fusion processing[J]. Opt. Precision Eng., 2015, 23(8):2328-2338.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201508027.htm [10] 鲁剑锋.无人机光电载荷图像处理器的设计[J].中国光学, 2011, 4(5):448-452. http://www.chineseoptics.net.cn/CN/abstract/abstract8718.shtmlLU J F. Design of UAV photo electric load image processor[J]. Chinese Optics, 2011, 4(5):448-452.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8718.shtml [11] 陈冬岚, 刘京南, 余玲玲.几种图像分割阈值选取方法的比较与研究[J].机械制造与自动化, 2003(1):77-80. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD200301025.htmCHEN D L, LIU J N, YU L L. Comparison and Research on threshold selection methods of several kinds of image segmentation[J]. Machinery Manufacturing and Automation, 2003(1):77-80.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD200301025.htm [12] 袁小翠, 吴禄慎, 陈华伟.基于Otsu方法的钢轨图像分割[J].光学精密工程, 2016, 24(7):1772-1781. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201607028.htmYUAN X C, WU L SH, CHEN H W. Rail image segmentation based on Otsu method[J]. Opt. Precision Eng., 2016, 24(7):1772-1781.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201607028.htm [13] 孟亚州, 马瑜, 白冰, 等.基于粒子群优化的Otsu肺组织分割算法[J].液晶与显示, 2015, 30(6):1000-1007. http://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201506017.htmMENG Y ZH, MA Y, BAI B, et al. Improved lung segmentation algorithm based on 2 D Otsu optimized by PSO[J]. Chinese J. Liquid Crystals and Displays, 2015, 30(6):1000-1007.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201506017.htm [14] 王智文.几种边缘检测算子的性能比较研究[J].制造业自动化, 2012, 34(11):14-16. doi: 10.3969/j.issn.1009-0134.2012.6(s).05WANG ZH W. A comparative study on the performance of several edge detection operators[J]. Manufacturing Automation, 2012.34(11):14-16.(in Chinese) doi: 10.3969/j.issn.1009-0134.2012.6(s).05 [15] 张正峰, 马少飞, 李玮.新的种子点区域填充算法[J].计算机工程与应用, 2009(6):201-202. http://www.cnki.com.cn/Article/CJFDTOTAL-FDXB200001016.htmZHANG ZH F, MA SH F, LI W. New seed point region filling algorithm[J]. Computer Engineering and Applications, 2009(6):201-202.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FDXB200001016.htm [16] MUKHOPADHYAY P, CHAUDHURI B B. A survey of hough transform[J]. Pattern Recognition, 2015, 48(3):993-1010. doi: 10.1016/j.patcog.2014.08.027 [17] 王崴, 张宇红, 洪军, 等.一种改进的Harris角点提取算法[J].光学精密工程, 2008, 16(10):1995-2001. doi: 10.3321/j.issn:1004-924X.2008.10.034WANG W, ZHANG Y H, HONG J, et al.. An improved Harris corner detection algorithm[J]. Opt. Precision Eng., 2008, 16(10):1995-2001.(in Chinese) doi: 10.3321/j.issn:1004-924X.2008.10.034 [18] 李海, 张宪民, 陈忠.基于直线检测的棋盘格角点自动提取[J].光学精密工程, 2015, 23(12):3480-3489. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201512026.htmLI H, ZHANG X M, CHEN ZH. Automatic extraction of corner points of a chess board based on line detection[J]. Opt. Precision Eng., 2015, 23(12):3480-3489.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201512026.htm [19] 刘博超, 赵建, 孙强.基于边缘改进的Harris角点检测方法[J].液晶与显示, 2013, 28(6):939-942. http://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201306031.htmLIU B CH, ZHAO J, SUN Q. Improved Harris corner detection method based on edge[J]. Chinese J. Liquid Crystals and Displays, 2013, 28(6):939-942.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201306031.htm [20] 杨云, 岳柱.基于融合图像轮廓矩和Harris角点方法的遮挡人体目标识别研究[J].液晶与显示, 2013, 28(2):273-277. http://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201302029.htmYANG Y, YUE ZH. Human body target recognition under occlusion based on fusion of image contour moment and Harris angular points[J]. Chinese J. Liquid Crystals and Displays, 2013, 28(2):273-277. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201302029.htm -