留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型便携式激光诱导击穿光谱系统综述

李安 邵秋峰 刘瑞斌

李安, 邵秋峰, 刘瑞斌. 新型便携式激光诱导击穿光谱系统综述[J]. 中国光学(中英文), 2017, 10(4): 426-437. doi: 10.3788/CO.20171004.0426
引用本文: 李安, 邵秋峰, 刘瑞斌. 新型便携式激光诱导击穿光谱系统综述[J]. 中国光学(中英文), 2017, 10(4): 426-437. doi: 10.3788/CO.20171004.0426
LI An, SHAO Qiu-feng, LIU Rui-bin. Review of new type portable laser-induced breakdown spectroscopy system[J]. Chinese Optics, 2017, 10(4): 426-437. doi: 10.3788/CO.20171004.0426
Citation: LI An, SHAO Qiu-feng, LIU Rui-bin. Review of new type portable laser-induced breakdown spectroscopy system[J]. Chinese Optics, 2017, 10(4): 426-437. doi: 10.3788/CO.20171004.0426

新型便携式激光诱导击穿光谱系统综述

doi: 10.3788/CO.20171004.0426
基金项目: 

国家自然科学基金项目 61574017

详细信息
    作者简介:

    李安(1993-), 男, 河北邢台人, 硕士研究生, 主要从事激光诱导等离子体方面的研究。E-mail:anglee@bit.edu.com

    刘瑞斌(1977-), 男, 河北承德人, 博士, 副教授, 硕士生导师, 主要从事半导体材料和微纳光电器件光学性质、激光器、光电探测、激光光谱学、可调谐激光等方面的研究

    通讯作者:

    刘瑞斌, Email:liuruibin8@gmail.com

  • 中图分类号: O433.54

Review of new type portable laser-induced breakdown spectroscopy system

Funds: 

National Natural Science Foundation of China 61574017

More Information
  • 摘要: 本文主要综述了国内外便携式激光诱导击穿光谱(LIBS)系统的研究进展和应用情况。目前该系统主要针对金属元素进行检测,对非金属等轻元素的定量分析需要较大能量的激光激发,但受限于激光器和光谱仪等组件体积的影响,研发便携式、高精度LIBS系统有较高难度。本文针对全元素检测便携设备的研发,利用限域和高压放电脉冲得到了增强的LIBS信号,降低了激光能量,从物理机理上给出了便携式LIBS设备研发的新方向。

     

  • 图 1  世界上第一台LIBS系统(激光器为KIGER MK-367, 被动调Q,Nd\:YAG 1 064 nm, 4~8 ns脉宽, 每束激光能为15~20 mJ, 最大工作频率为1 Hz)[11]

    Figure 1.  The first LIBS system in the world (the laser is KIGER MK-367, passively Q-switched, Nd\:YAG 1 064 nm, 4-8 ns pulse width, 15-20 mJ/pulse, 1Hz rep. rate max)[11]

    图 2  可移动式LIBS系统(激光器双脉冲共线输出波长为1 064 nm,能量为50~120 mJ可调,最大工作频率为10 Hz[13])

    Figure 2.  Mobile LIBS system (dual-pulse laser emits two collinear pulses at 1 064 nm with variable energy between 50 and 120 mJ per pulse at a maximum repetition rate of 10 Hz[13])

    图 3  (a)调Q激光器双脉冲共线输出的时间分辨(Nd\:YAG/1 064 nm, 脉冲间隔在30~70 μs可控);(b)两脉冲的时间间隔和输出能量之间的关系[13-14]

    Figure 3.  (a) The time arrangement of the Q-switch laser coaxial output (Nd\:YAG/1 064 nm, the delay between the double pulses can be controlled in 30-70 μs); (b) The relation of the time delay and the double pulse output energy [13-14]

    图 4  具有激光头和操作系统的枪状便携式LIBS系统[16]

    Figure 4.  The gun-shape of a portable LIBS system with laser head and operating system[16]

    图 5  背包式LIBS探测系统(采用Nd\:YAG, 1 064 nm(ALST Inc.), 主动调Q激光器每束激光能量50 mJ, 脉宽小于10 ns[18])

    Figure 5.  Man-portable/backpack LIBS sensor system (the laser is Nd\:YAG, 1 064 nm (ALST Inc.), 50 mJ/pulse, pulse width <10 ns[18])

    图 6  推轮式LIBS分析系统分析岩洞中的岩石(采用调Q,Nd\:YAG/1 064 nm激光器, 每束激光能量50 mJ, 6.5 ns脉宽[19])

    Figure 6.  Wheeled LIBS system used in a cave (the laser is Q-switched Nd\:YAG/1 064 nm with 50 mJ pulse and 6.5 ns pulse width[19])

    图 7  用于皮肤组织检测的1.54 μm输出波长便携LIBS激光头[21]

    Figure 7.  The laser output 1.54 μm wavelength of a portable LIBS be applied to detect skin tissue[21]

    图 8  便携LIBS系统组成:样品室,激光器和时间调节电路[22]

    Figure 8.  Portable LIBS system including sampling chamber, laser and timing circuit[22]

    图 9  (a)用于检测物体表面化学战剂的背包式便携LIBS系统;(b)外形参数[23]

    Figure 9.  (a) A portable LIBS system applied to detect the CWAs of body surface; (b) The parameters of configuration[23]

    图 10  光纤激光LIBS检测系统(脉冲光纤激光为基于主振荡器功率放大器MOPA的YDELP-20-PRO-S,输出波长为1 064 nm±3 nm,脉宽为10~200 ns,频率为25~400 kHz可调,最大输出能量为0.4 mJ[30])

    Figure 10.  Fiber laser-LIBS system (pulsed fiber laser YDELP-20-PRO-S based on the master oscillator power amplifier (MOPA) configuration, with wavelength of 1 064 nm±6 nm, pulse width of 10-200 ns, repetition rates of 25-400 kHz and the maximum pulse energy is up to 0.4 mJ [30])

    图 11  铝制半球形限域微腔LIBS光谱信号增强装置示意图(半球形微腔直径为5, 6, 7, 8 mm,顶部有2 mm直径空洞以让激光通过[31])

    Figure 11.  Aluminum hemispherical cavities used for LIBS signal enhancement (the diameter of hemispherical is 5, 6, 7, 8 mm, and the laser excites the sample by the 2 mm hole at the top of the hemispherical cavity[31])

    图 12  高压脉冲放电辅助LIBS信号增强示意图(柱形电极直径为5 mm,电极前端为半球形尖端,两个电极有5 mm间隙,并成一定角度放置在样品表面上方约2 mm处[37-38])

    Figure 12.  The high voltage discharged used for LIBS signal enhancement (the electrodes are cylindrical rods of 5 mm in diameter with a hemisphere shaped tip, and angled toward the sample, the lowest edge of each electrode tip is ~2 mm above the sample[37-38])

  • [1] 郑建平. 煤粉颗粒流的激光诱导击穿光谱特性及其测量方法研究[D]. 广州: 华南理工大学, 2014.

    ZHENG J P. Study on the laser plasma ppectral characteristics and measurement methods of moal particle flow[D]. Guangzhou:South China University of Technology, 2014. (in Chinese)
    [2] 李占峰, 王芮雯, 邓琥, 等.黄连、附片和茯苓内铜元素激光诱导击穿光谱分析[J].发光学报, 2016, 37(1):100-105. http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201601016.htm

    LI Z F, WANG R W, DENG H, et al.. Laser induced breakdown spectroscopy of Cu in coptis chinensis, aconite root and poria cocos[J]. Chinese Journal of Luminescence, 2016, 37(1):100-105. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201601016.htm
    [3] 陈世和, 陆继东, 张博, 等.激光诱导击穿光谱法测量煤粉流的控制因素[J].光学精密工程, 2013, 21(7):1651-1658. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201307003.htm

    CHEN SH H, LU J D, ZHANG B, et al.. Controllabel factors in detection of pulverized coal flow with LIBS[J]. Optics and Precision Engineering, 2013, 21(7):1651-1658. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201307003.htm
    [4] 陆继东, 郑建平, 张博, 等.空气环境下煤粉流多元素同时检测中激光能量研究[J].光谱学与光谱分析, 2014, 34(1):221-225. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201401055.htm

    LU J D, ZHENG J P, ZHANG B, et al.. Study of laser energy in multi-element detection of pulverized coal flow with laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(1):221-225. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201401055.htm
    [5] 邹孝恒, 郝中骐, 易荣兴, 等.基于遗传算法和偏最小二乘法的土壤激光诱导击穿光谱定量分析研究[J].分析化学, 2015, 43(2):181-186. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201502003.htm

    ZOU X H, HAO ZH Q, YI R X, et al.. Quantitative analysis of soil by laser-induced breakdown spectroscopy using genetic algorithm-partial least squares[J]. Chinese Journal of Analytical Chemistry, 2015, 2015, 43(2):181-186. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201502003.htm
    [6] CARSON C G, GOUEGUEL C L, SANGHAIPI H, et al.. Evaluation of a commercially available passively Q switched Nd:YAG laser with LiF:F2- saturable absorber for laser induced breakdown spectroscopy[J]. Optics & Laser Technology, 2016, 79:146-152. https://www.researchgate.net/publication/286639332_Evaluation_of_a_commercially_available_passively_Q-switched_NdYAG_laser_with_LiFF2-_saturable_absorber_for_laser-induced_breakdown_spectroscopy
    [7] UNNIKRISHNAN V K, NAYAK R, BHAT S, et al.. Biomedical applications of laser-induced breakdown spectroscopy (LIBS)[J]. SPIE, 2016, 9332:933211-5. https://www.researchgate.net/publication/281999310_Biomedical_applications_of_Laser-Induced_Breakdown_Spectroscopy_LIBS
    [8] 王茜蒨, 黄志文, 刘凯, 等.基于主成分分析和人工神经网络的激诱导击穿光谱塑料分类识别方法研究[J].光谱学与光谱分析, 2012, 32(12):3179-3182. doi: 10.3964/j.issn.1000-0593(2012)12-3179-04

    WANG Q Q, HUANG ZH W, LIU K, et al.. Classification of plastics with laser induced breakdown spectroscopy based on principle component analysis and artificial neural network model[J]. Spectroscopy and Spectral Analysis, 2012, 32(12):3179-3182. (in Chinese) doi: 10.3964/j.issn.1000-0593(2012)12-3179-04
    [9] ANDERSEN M B S, FRYDENVANG J, HENCKEL P, et al.. The potential of laser-induced breakdown spectroscopy for industrial[J]. Food Control, 2016, 64:226-233. doi: 10.1016/j.foodcont.2016.01.001
    [10] MULTARI R A, CREMERS D A, DUPRE J A, et al.. Detection of biological contaminants on foods and food surfaces using LIBS[J]. Journal of Agricultural & Food Chemistry, 2013, 61(36):8687-8694. https://www.researchgate.net/publication/255951030_Detection_of_Biological_Contaminants_on_Foods_and_Food_Surfaces_Using_Laser-Induced_Breakdown_Spectroscopy_LIBS
    [11] YAMAMOTO K Y, CREMERS D A, FERRIS M J, et al.. Detection of metals in the, environment using a portable laser-induced breakdown spectroscopy instrument[J]. Applied Spectroscopy, 1996, 50(2):222-233 doi: 10.1366/0003702963906519
    [12] CASTLE B C, KNIGHT A K, VISSER K, et al.. Battery powered laser-induced plasma spectrometer for elemental determinations[J]. Journal of Analytical Atomic Spectrometry, 1998, 13(13):589-595. https://www.researchgate.net/publication/244553444_Battery_powered_laser-induced_plasma_spectrometer_for_elemental_determination
    [13] BERTOLINI A, CARELLI G, FRANCESCONI F, et al.. Modi:a new mobile instrument for in situ double-pulse LIBS analysis[J]. Analytical & Bioanalytical Chemistry, 2008, 385(2):240-247. doi: 10.1007/s00216-006-0413-6
    [14] GOUJON J, GAIKOUMAKI A, PINON V, et al.. A compact and portable LIBS instrument for single and double pulse application[J]. Spectrochimica Acta Part B, 63(2008):1091-1096.
    [15] ZENG Q, GUO L, LI X, et al.. Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(3):767-772. doi: 10.1039/C5JA00453E
    [16] RAKOVSKY J, MUSSET O, BUONCRISTIANI J F, et al.. Testing a portable laser-induced breakdown spectroscopy system on geological samples[J]. Spectrochimica Acta Part B Atomic spectroscopy, 2012, 74-75(8):57-65. doi: 10.1007/s10661-014-4058-1
    [17] 陈少杰, 齐向东, 巴音贺希格, 等.用于激光诱导等离子体光谱分析的便携式中阶梯光栅光谱仪设计[J].发光学报, 2013, 34(5):672-677. http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201305034.htm

    CHEN SH J, QI X D, BAYANHESHIG, et al.. A portable echelle spectrograph design for laser induced breakdown spectroscopy[J]. Chinese Journal of Luminescence, 2013, 34(5):672-677. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201305034.htm
    [18] DELUCIA F C, SAMUELS A C, HARMON R S, et al.. Laser-induced breakdown spectroscopy (LIBS):a promising versatile chemical sensor technology for hazardous material detection[J]. IEEE, 2005, 5(4):681-689.
    [19] CUNAT J, PALANCO S, CARRASCO F, et al.. Portable instrument and analytical method using laser-induced breakdown spectrometry for in situ characterization of speleothems in karstic caves[J]. Journal of Analytical Atomic Spectrometry, 2005, 20(20):295-300. https://www.researchgate.net/publication/225183116_Portable_instrument_and_analytical_method_using_laser-induced_breakdown_spectrometry_for_in_situ_characterization_of_speleothems_in_karstic_caves
    [20] CUNAT J, FORTES F J, LASERNA J J. Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer[J]. Analytica Chimica Acta, 2009, 633(1):38-42. doi: 10.1016/j.aca.2008.11.045
    [21] MYERS M J, MYERS J D, GUO B, et al.. Non-invasive in-situ detection of malignant skin tissue and other abnormalities using portable LIBS system with fiber spectrometer and eye-safe erbium glass laser[J].SPIE, 2008, 6863:68630W. https://www.researchgate.net/publication/253602795_Non-invasive_in-situ_detection_of_malignant_skin_tissue_and_other_abnormalities_using_portable_LIBS_system_with_fiber_spectrometer_and_Eye-safe_erbium_glass_laser
    [22] WILL P, SCHLORHOLZ S, DREHER M. Portable LIBS instrumentation can identify trace levels of environmental pollutants[J]. Journal of Transport Economics & Policy, 2011, 46(1):25-49 https://www.researchgate.net/publication/228780619_Portable_LIBS_instrumentation_can_identify_trace_levels_of_environmental_pollutants
    [23] HERMITE D L, VORS E, VERCOUTER T, et al.. Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces[J]. Environmental Science & Pollution Research, 2016, 23(9):8219-8226. doi: 10.1007%2Fs11356-016-6305-1.pdf
    [24] HARMON R S, CELUCIA F C, LAPOINTE A, et al.. LIBS for landmine detection and discrimination[J]. Analytical & Bioanalytical Chemistry, 2006, 385(385):1140-1148. http://connection.ebscohost.com/c/articles/21396822/libs-landmine-detection-discrimination
    [25] ANGLOS D, DETALLE V. Cultural Heritage Applications of LIBS[M]. Berlin:Springer Series in Optical Sciences, 2014, 182:531-554.
    [26] GIACOMO A D, AGLIO D M, CASAVOLA A, et al.. Elemental chemical analysis of submerged targets by double-pulse laser-induced breakdown spectroscopy[J]. Analytical & Bioanalytical Chemistry, 2006, 385(2):303-311. doi: 10.1007/s00216-006-0323-7
    [27] COOPER M. Laser Cleaning[M]. Oxford:Butterworth-Heinemann, 1998.
    [28] FERRETTI M, CRISTOFORETTI G, LEGNAIOLI S, et al.. In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser-induced breakdown spectroscopy[J]. Spectrochmica Acta Part B Atomic Spectroscopy, 2007, 62(12):1512-1518. doi: 10.1016/j.sab.2007.09.004
    [29] CRISTOFORETTI G, LEGNAIOLI S, PALLESCHI V, et al.. Modi:a new mobile instrument for in situ standardless LIBS analysis of cultural heritage[J]. SPIE, 2005, 5857:129-138. doi: 10.1007/s00216-006-0413-6
    [30] ZENG Q, GUO L, LI X, et al.. Quantitative analyses of Mn, V, and Si elements in steels using a portable laser-induced breakdown spectroscopy system based on a fiber laser[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(3):767-772. doi: 10.1039/C5JA00453E
    [31] MCLAUGHLIN R P, MASON G S, MILLER A L, et al.. A portable laser induced breakdown spectroscopy instrument for rapid sampling and analysis of silicon containing aerosols[J]. Review of Scientific Instruments, 2016, 87(5):114-120. https://www.researchgate.net/profile/Guillaume_Gallou/citations?sorting=recent&page=1
    [32] YANG G, LIN Q, DING Y, et al.. Laser induced breakdown spectroscopy based on single beam splitting and geometric configuration for effective signal enhancement[J]. Scientific Reports, 2015, 5(10-12):7625-7625. https://www.researchgate.net/publication/270513415_Laser_Induced_Breakdown_Spectroscopy_Based_on_Single_Beam_Splitting_and_Geometric_Configuration_for_Effective_Signal_Enhancement
    [33] LEE D H, HAN S C, KIM T H, et al.. Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy[J]. Analytical Chemistry, 2011, 83(24):9456-9461. doi: 10.1021/ac2021689
    [34] GUO L B, HU W, ZHANG B Y, et al.. Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement[J]. Optics Express, 2011, 19(15):14067-14075. doi: 10.1364/OE.19.014067
    [35] GUO L B, HAO Z Q, SHEN M, et al.. Accuracy improvement of quantitative analysis byspatial confinement in laser-induced breakdown spectroscopy[J]. Optics Express, 2013, 21(15):18188-18195. doi: 10.1364/OE.21.018188
    [36] ESCHLBOCK S, KOLMHOFER P J, BODEA M A, et al.. Boosting persistence time of laser-induced plasma by electric arcdischarge for optical emission spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2015, 109:31-38. doi: 10.1016/j.sab.2015.04.009
    [37] ZHOU W D, LI K X, QIAN H G, et al.. Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser induced breakdown spectroscopy[J]. Applied Optics, 2012, 51(7):42-48. doi: 10.1364/AO.51.000B42
    [38] LI K X, ZHOU W D, SHEN Q, et al.. Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2010, 65(5):420-424. doi: 10.1016/j.sab.2010.04.006
  • 加载中
图(12)
计量
  • 文章访问数:  4175
  • HTML全文浏览量:  1215
  • PDF下载量:  630
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-15
  • 修回日期:  2017-03-28
  • 刊出日期:  2017-08-01

目录

    /

    返回文章
    返回