留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光刻写的超短光纤布拉格光栅及其传感特性

敬世美 张轩宇 梁居发 陈超 郑钟铭 于永森

敬世美, 张轩宇, 梁居发, 陈超, 郑钟铭, 于永森. 飞秒激光刻写的超短光纤布拉格光栅及其传感特性[J]. 中国光学(中英文), 2017, 10(4): 449-454. doi: 10.3788/CO.20171004.0449
引用本文: 敬世美, 张轩宇, 梁居发, 陈超, 郑钟铭, 于永森. 飞秒激光刻写的超短光纤布拉格光栅及其传感特性[J]. 中国光学(中英文), 2017, 10(4): 449-454. doi: 10.3788/CO.20171004.0449
JING Shi-mei, ZHANG Xuan-yu, LIANG Ju-fa, CHEN Chao, ZHENG Zhong-ming, YU Yong-sen. Ultrashort fiber Bragg grating written by femtosecond laser and its sensing characteristics[J]. Chinese Optics, 2017, 10(4): 449-454. doi: 10.3788/CO.20171004.0449
Citation: JING Shi-mei, ZHANG Xuan-yu, LIANG Ju-fa, CHEN Chao, ZHENG Zhong-ming, YU Yong-sen. Ultrashort fiber Bragg grating written by femtosecond laser and its sensing characteristics[J]. Chinese Optics, 2017, 10(4): 449-454. doi: 10.3788/CO.20171004.0449

飞秒激光刻写的超短光纤布拉格光栅及其传感特性

doi: 10.3788/CO.20171004.0449
基金项目: 

国家自然科学基金资助项目 61505206

吉林省科技发展计划资助项目 20150520089JH

详细信息
    作者简介:

    敬世美(1991-), 女, 四川遂宁人, 硕士研究生, 2014年于河北农业大学获得学士学位, 主要从事光纤传感器方面的研究。E-mail:785625159@qq.com

    于永森(1974-), 男, 吉林长春人, 博士, 副教授, 2005年于吉林大学获得博士学位, 主要从事光纤高温传感器方面的研究

    通讯作者:

    于永森, E-mail:yuys@jlu.edu.cn

  • 中图分类号: TN253

Ultrashort fiber Bragg grating written by femtosecond laser and its sensing characteristics

Funds: 

the National Natural Science Foundation of China 61505206

Jilin Provincial S & T Development Program Project 20150520089JH

More Information
  • 摘要: 为了提高光纤光栅传感器的测量精度及可靠性,实现点式测量,拓宽光纤布拉格光栅(FBG)的应用,本文提出了基于飞秒激光直写扫线技术制备超短FBG。首先,在单模光纤上制备了周期为5.35 μm、长度为53.5 μm的超短FBG,其温度和应力的灵敏度分别为0.011 nm/℃和1.509 nm/N;然后,用体积分数为4%的氢氟酸对制备超短FBG进行选择性腐蚀,制备出了微通道超短FBG,并研究了它对NaCl溶液的传感特性,其折射率灵敏度为69.11 nm/RIU。结果表明,这种微通道超短FBG具有高重复性、高可靠性、可多参数测量等优点。

     

  • 图 1  (a)飞秒激光刻写示意图;(b)基于微通道的光纤超短FBG结构示意图

    Figure 1.  (a) Schematic diagram of femtosecond laser writting; (b) Schematic diagram of microchannel ultrashort FBG structure

    图 2  基于微通道的超短FBG的显微照片。(a)侧视图;(b)俯视图

    Figure 2.  Micrographs of microchannel ultrashort FBG. (a) Side view; (b) Top view

    图 3  超短FBG反射光谱

    Figure 3.  Reflectance spectrum of ultrashort FBG

    图 4  未腐蚀超短FBG温度特性。(a)衍射峰波长随外界温度变化的漂移; (b)衍射峰波长和温度的线性关系

    Figure 4.  Temperature characteristics of uncorroded ultrashort FBG. (a) Wavelength shifts of diffraction peak with the change of surrounding temperature; (b) Linear relationship between the wavelength of diffraction peak and temperature

    图 5  未腐蚀超短FBG的应力特性。(a)衍射峰波长随外界应力变化的漂移; (b)衍射峰波长与外界应力的线性关系

    Figure 5.  `Stress characteristics of uncorroded ultrashort FBG. (a) Wavelength shifts of diffraction peak with the change of surrounding stress; (b) Linear relationship between the wavelength of diffraction peak and stress

    图 6  基于微通道的超短FBG反射光谱随外界折射率的漂移

    Figure 6.  Shift of reflection spectra of microchannel ultrashort FBG with surrounding refractive index

    图 7  基于微通道的超短FBG的折射率响应特性。(a)衍射峰波长随外界折射率变化的漂移; (b)衍射峰的波长漂移和外界折射率的线性关系

    Figure 7.  Refractive index response characteristics of microchannel ultrashort FBG. (a) Wavelength shifts of diffraction peak with the change of surrounding refractive index; (b) Linear relationship between wavelength shifts of diffraction peak and surrounding refractive index

  • [1] 祝宁华, 闫连山, 刘建国.光纤光学前沿[M].北京:科学出版社, 2011.

    ZHU N H, YAN L S, LIU J G. Optical fiber frontier[M]. Beijing:Science Press, 2011. (in Chinese)
    [2] 饶云江, 王义平, 朱涛.光纤光栅原理及应用[M].北京:科学出版社, 2006.

    RAO Y J, WANG Y P, ZHU T. Fiber grating principle and application[M]. Beijing:Science Press, 2006. (in Chinese)
    [3] MIHAILOV S J. Fiber Bragg grating sensors for harsh environments[J]. Sensors, 2012, 12(2):1898-1918. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.350.1509
    [4] 徐国权, 熊代余.光纤光栅传感技术在工程中的应用[J].中国光学, 2013, 9(3):306-317. http://www.cnki.com.cn/Article/CJFDTOTAL-SCJI200602051.htm

    XU G Q, XIONG D Y. Application of fiber Bragg grating sensing technology in engineering[J]. Chinese Optics, 2013, 9(3):306-317. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SCJI200602051.htm
    [5] MARTINEZ A, DUBOV M, KHRUSHCHEV I, et al.. Direct writing of fiber Bragg gratings by femtosecond laser[J]. Electronics Letters, 2004, 40(19):1170-1172. doi: 10.1049/el:20046050
    [6] CANNING J. Fibre gratings and devices for sensors and lasers[J]. Laser & Photonics Reviews, 2008, 2(4):275-289. https://www.researchgate.net/profile/John_Canning/publication/223465800_Fibre_Gratings_and_Devices_for_Sensors_and_Lasers/links/02e7e51c510a88d0a6000000.pdf
    [7] VOIGTLäNDER C, BECKER R G, THOMAS J, et al.. Ultrashort pulse inscription of tailored fiber Bragg gratings with a phase mask and a deformed wavefront[J]. Optical Materials Express, 2011, 1(4):633-642. doi: 10.1364/OME.1.000633
    [8] BERNIER M, GAGNON S, VALLéE R. Role of the 1D optical filamentation process in the writing of first order fiber Bragg gratings with femtosecond pulses at 800 nm[J]. Optical Materials Express, 2011, 1(5):832-844. doi: 10.1364/OME.1.000832
    [9] THOMAS J, JOVANOVIC N, BECKER R G, et al.. Cladding mode coupling in highly localized fiber Bragg gratings:modal properties and transmission spectra[J]. Optics Express, 2011, 19(1):325-341. doi: 10.1364/OE.19.000325
    [10] LIAN J F, JING S M, MENG A H, et al.. Integrated optical sensor based on a FBG in parallel with a LPG[J]. Chinese Optics, 2016, 9(3):329-334. doi: 10.3788/co.
    [11] YANG R, YU Y S, CHEN C, et al.. Rapid fabrication of microhole array structured optical fibers[J]. Optics Letters, 2011, 36(19):3879-3881. doi: 10.1364/OL.36.003879
    [12] FU H, ZHOU K, SAFFARI P, et al.. Microchanneled chirped fiber Bragg grating formed by femtosecond laser-aided chemical etching for refractive index and temperature measurements[J]. IEEE, 2008, 20(19):1609-1611. https://www.researchgate.net/publication/45655605_Microchanneled_Chirped_Fiber_Bragg_Grating_Formed_by_Femtosecond_Laser-Aided_Chemical_Etching_for_Refractive_Index_and_Temperature_Measurements
    [13] 王闯. Bragg光纤光栅飞秒激光制备及其金属化封装技术研究[D]. 长春: 吉林大学, 2013.

    WANG CH. Research on fabrication of fiber Bragg grating by femtosecond laser and its packaging technique[D]. Changchun:Jilin University, 2013. (in Chinese)
    [14] 陈超. 耐高温光纤光栅的飞秒激光制备及其应用研究[D]. 长春: 吉林大学, 2014.

    CHEN C H. Fabrication of robust fiber grating by femtosecond laser and their applications[D]. Changchun:Jilin University, 2014. (in Chinese)
    [15] MARSHALL G D, WILLIAMS R J, JOVANOVIC N, et al.. Point-by-point written fiber-Bragg gratings and their application in complex grating designs[J]. Optics Express, 2010, 18(19):19844-19859. doi: 10.1364/OE.18.019844
    [16] 梁居发. 新型光纤光栅传感器飞秒激光制备及其特性研究[D]. 长春: 吉林大学, 2016.

    LIANG J F. Fabrication of novel optical fiber grating sensors and study on their characteristics[D]. Changchun:Jilin University, 2016. (in Chinese)
    [17] 罗彬彬, 赵明富, 周晓军, 等.单端腐蚀光纤布拉格光栅在低折射率区的理论和模型及设计[J].光学学报, 2011, 31(04):0406004. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201104016.htm

    LUO B B, ZHAO M F, ZHOU X J, et al.. Theoretical model and design of single-end etched fiber Bragg grating in low refractive-index area[J]. Acta Optica Sinica, 2011, 31(4):0406004. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201104016.htm
    [18] 郭景春. 长周期光纤光栅飞秒激光制备及其传感特性研究[D]. 长春: 吉林大学, 2012.

    GUO J CH. Research on fabrication of long period fiber grating by femtosecond laser and its sensing characteristic[D]. Changchun:Jilin University, 2012. (in Chinese)
  • 加载中
图(7)
计量
  • 文章访问数:  2747
  • HTML全文浏览量:  996
  • PDF下载量:  850
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-28
  • 修回日期:  2017-04-03
  • 刊出日期:  2017-08-01

目录

    /

    返回文章
    返回