Ultrashort fiber Bragg grating written by femtosecond laser and its sensing characteristics
-
摘要: 为了提高光纤光栅传感器的测量精度及可靠性,实现点式测量,拓宽光纤布拉格光栅(FBG)的应用,本文提出了基于飞秒激光直写扫线技术制备超短FBG。首先,在单模光纤上制备了周期为5.35 μm、长度为53.5 μm的超短FBG,其温度和应力的灵敏度分别为0.011 nm/℃和1.509 nm/N;然后,用体积分数为4%的氢氟酸对制备超短FBG进行选择性腐蚀,制备出了微通道超短FBG,并研究了它对NaCl溶液的传感特性,其折射率灵敏度为69.11 nm/RIU。结果表明,这种微通道超短FBG具有高重复性、高可靠性、可多参数测量等优点。Abstract: In order to improve the measurement accuracy and reliability of fiber grating sensors, realize the single-point measurement ability and broaden the application of fiber Bragg grating (FBG), an ultrashort FBG is fabricated based on the femtosecond laser direct writing technique in this paper. The ultrashort FBG with a period of 5.35 μm and a length of 53.5 μm is fabricated in single mode fiber, and its temperature sensitivity and stress sensitivity are 0.011 nm/℃ and 1.509 nm/N, respectively. Then, a microchannel ultrashort FBG based on ultrashort FBG is fabricated by selective corrosion with a volume fraction of 4% hydrofluoric acid, and its sensing property to NaCl solution is studied. The refractive index sensitivity of the microchannel ultrashort FBG is 69.11 nm/RIU. The microchannel ultrashort FBG has the advantages of high repeatability and multi-parameter measurement.
-
Key words:
- femtosecond laser writing /
- ultrashort fiber Bragg grating /
- temperature /
- stress /
- refractive index
-
图 7 基于微通道的超短FBG的折射率响应特性。(a)衍射峰波长随外界折射率变化的漂移; (b)衍射峰的波长漂移和外界折射率的线性关系
Figure 7. Refractive index response characteristics of microchannel ultrashort FBG. (a) Wavelength shifts of diffraction peak with the change of surrounding refractive index; (b) Linear relationship between wavelength shifts of diffraction peak and surrounding refractive index
-
[1] 祝宁华, 闫连山, 刘建国.光纤光学前沿[M].北京:科学出版社, 2011.ZHU N H, YAN L S, LIU J G. Optical fiber frontier[M]. Beijing:Science Press, 2011. (in Chinese) [2] 饶云江, 王义平, 朱涛.光纤光栅原理及应用[M].北京:科学出版社, 2006.RAO Y J, WANG Y P, ZHU T. Fiber grating principle and application[M]. Beijing:Science Press, 2006. (in Chinese) [3] MIHAILOV S J. Fiber Bragg grating sensors for harsh environments[J]. Sensors, 2012, 12(2):1898-1918. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.350.1509 [4] 徐国权, 熊代余.光纤光栅传感技术在工程中的应用[J].中国光学, 2013, 9(3):306-317. http://www.cnki.com.cn/Article/CJFDTOTAL-SCJI200602051.htmXU G Q, XIONG D Y. Application of fiber Bragg grating sensing technology in engineering[J]. Chinese Optics, 2013, 9(3):306-317. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SCJI200602051.htm [5] MARTINEZ A, DUBOV M, KHRUSHCHEV I, et al.. Direct writing of fiber Bragg gratings by femtosecond laser[J]. Electronics Letters, 2004, 40(19):1170-1172. doi: 10.1049/el:20046050 [6] CANNING J. Fibre gratings and devices for sensors and lasers[J]. Laser & Photonics Reviews, 2008, 2(4):275-289. https://www.researchgate.net/profile/John_Canning/publication/223465800_Fibre_Gratings_and_Devices_for_Sensors_and_Lasers/links/02e7e51c510a88d0a6000000.pdf [7] VOIGTLäNDER C, BECKER R G, THOMAS J, et al.. Ultrashort pulse inscription of tailored fiber Bragg gratings with a phase mask and a deformed wavefront[J]. Optical Materials Express, 2011, 1(4):633-642. doi: 10.1364/OME.1.000633 [8] BERNIER M, GAGNON S, VALLéE R. Role of the 1D optical filamentation process in the writing of first order fiber Bragg gratings with femtosecond pulses at 800 nm[J]. Optical Materials Express, 2011, 1(5):832-844. doi: 10.1364/OME.1.000832 [9] THOMAS J, JOVANOVIC N, BECKER R G, et al.. Cladding mode coupling in highly localized fiber Bragg gratings:modal properties and transmission spectra[J]. Optics Express, 2011, 19(1):325-341. doi: 10.1364/OE.19.000325 [10] LIAN J F, JING S M, MENG A H, et al.. Integrated optical sensor based on a FBG in parallel with a LPG[J]. Chinese Optics, 2016, 9(3):329-334. doi: 10.3788/co. [11] YANG R, YU Y S, CHEN C, et al.. Rapid fabrication of microhole array structured optical fibers[J]. Optics Letters, 2011, 36(19):3879-3881. doi: 10.1364/OL.36.003879 [12] FU H, ZHOU K, SAFFARI P, et al.. Microchanneled chirped fiber Bragg grating formed by femtosecond laser-aided chemical etching for refractive index and temperature measurements[J]. IEEE, 2008, 20(19):1609-1611. https://www.researchgate.net/publication/45655605_Microchanneled_Chirped_Fiber_Bragg_Grating_Formed_by_Femtosecond_Laser-Aided_Chemical_Etching_for_Refractive_Index_and_Temperature_Measurements [13] 王闯. Bragg光纤光栅飞秒激光制备及其金属化封装技术研究[D]. 长春: 吉林大学, 2013.WANG CH. Research on fabrication of fiber Bragg grating by femtosecond laser and its packaging technique[D]. Changchun:Jilin University, 2013. (in Chinese) [14] 陈超. 耐高温光纤光栅的飞秒激光制备及其应用研究[D]. 长春: 吉林大学, 2014.CHEN C H. Fabrication of robust fiber grating by femtosecond laser and their applications[D]. Changchun:Jilin University, 2014. (in Chinese) [15] MARSHALL G D, WILLIAMS R J, JOVANOVIC N, et al.. Point-by-point written fiber-Bragg gratings and their application in complex grating designs[J]. Optics Express, 2010, 18(19):19844-19859. doi: 10.1364/OE.18.019844 [16] 梁居发. 新型光纤光栅传感器飞秒激光制备及其特性研究[D]. 长春: 吉林大学, 2016.LIANG J F. Fabrication of novel optical fiber grating sensors and study on their characteristics[D]. Changchun:Jilin University, 2016. (in Chinese) [17] 罗彬彬, 赵明富, 周晓军, 等.单端腐蚀光纤布拉格光栅在低折射率区的理论和模型及设计[J].光学学报, 2011, 31(04):0406004. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201104016.htmLUO B B, ZHAO M F, ZHOU X J, et al.. Theoretical model and design of single-end etched fiber Bragg grating in low refractive-index area[J]. Acta Optica Sinica, 2011, 31(4):0406004. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201104016.htm [18] 郭景春. 长周期光纤光栅飞秒激光制备及其传感特性研究[D]. 长春: 吉林大学, 2012.GUO J CH. Research on fabrication of long period fiber grating by femtosecond laser and its sensing characteristic[D]. Changchun:Jilin University, 2012. (in Chinese)