留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光诱导击穿光谱增强机制及技术研究进展

李安 王亮伟 郭帅 刘瑞斌

李安, 王亮伟, 郭帅, 刘瑞斌. 激光诱导击穿光谱增强机制及技术研究进展[J]. 中国光学, 2017, 10(5): 619-640. doi: 10.3788/CO.20171005.0619
引用本文: 李安, 王亮伟, 郭帅, 刘瑞斌. 激光诱导击穿光谱增强机制及技术研究进展[J]. 中国光学, 2017, 10(5): 619-640. doi: 10.3788/CO.20171005.0619
LI An, WANG Liang-wei, GUO Shuai, LIU Rui-bin. Advances in signal enhancement mechanism and technology of laser induced breakdown spectroscopy[J]. Chinese Optics, 2017, 10(5): 619-640. doi: 10.3788/CO.20171005.0619
Citation: LI An, WANG Liang-wei, GUO Shuai, LIU Rui-bin. Advances in signal enhancement mechanism and technology of laser induced breakdown spectroscopy[J]. Chinese Optics, 2017, 10(5): 619-640. doi: 10.3788/CO.20171005.0619

激光诱导击穿光谱增强机制及技术研究进展

doi: 10.3788/CO.20171005.0619
基金项目: 

国家自然科学基金资助项目 61574017

详细信息
    作者简介:

    李安(1993-), 男, 河北邢台人, 硕士研究生, 主要从事激光诱导等离子体方面的研究。E-mail:anglee@bit.edu.cn

    刘瑞斌(1977-),男,河北承德人,博士,副教授,硕士生导师,主要从事半导体材料和微纳光电器件光学性质、激光器、光电探测、激光光谱学、可调谐激光等方面的研究

    通讯作者:

    刘瑞斌, E-mail:liuruibin8@gmail.com

  • 中图分类号: O433.54

Advances in signal enhancement mechanism and technology of laser induced breakdown spectroscopy

Funds: 

by National Natural Science Foundation of China 61574017

More Information
  • 摘要: 激光诱导击穿光谱技术是一种新的材料识别及定量分析技术。但是光谱的重复性低限制其由定性分析向定量分析的发展。因此提高激光诱导等离子光谱信号信噪比及等离子体的空间稳定性对于提高光谱信号的可重复性、降低基体效应等不利因素影响有着积极的作用。同时光谱信号信噪比的增强可降低对激光器输出能量的要求,有效降低了激光诱导击穿光谱集成系统的成本,有利于此技术向更多领域拓展。本文对实验中采用的双脉冲或多脉冲增强,放电脉冲再激发,空间限域,磁场束缚和微波辅助增强四大类方法加以总结及概括。在此基础上深入探讨光谱增强的物理机制,从而为进一步提高光谱信号稳定性及定量化分析的精确度提供有力的理论支持。
  • 图  1  双脉冲LIBS实验系统示意,实验中采用两台调Q的Nd:YAG 1 064 nm(Big Sky公司生产)激光器,第一台脉宽为7.1 ns,激光能量为40 mJ/束,第二台激光器脉宽6.4 ns,激光能量为40 mJ/束,重复频率都为0.7 Hz,激光光束采用垂直入射方式对样品进行激发[2]

    Figure  1.  Diagram of Double-pulses LIBS system. The system consists of two Nd:YAG 1 064 nm Q-switched lasers(Big Sky Company). The pulse width of laser 1 and laser 2 is 7.1 ns, 6.4 ns respectively, and the energy output both 40 mJ/pulse. The repetition frequency both are 0.7 Hz and the angle is ninety degrees between laser 1 and laser 2[2]

    图  2  双脉冲共线型LIBS实验装置,所用的两台激光器均为Nd:YAG 1 064 nm被动调Q激光器,脉宽10 ns,重复频率0.5 Hz,光束直径6 mm[3]

    Figure  2.  Schematic of collinear dual-pulse LIBS system, and the lasers used in the experiment both are Nd:YAG 1 064 nm Q-switched laser with the pulse duration 10 ns, the repetition rate is 0.5 Hz, and the beam diameter is 6 mm[3]

    图  3  共线双脉冲LIBS示意,飞秒激光系统最后产生800 nm波长,50 fs脉宽,输出能量为800 mJ的飞秒激光,并采用机械的方法来控制光束间的延迟[8]

    Figure  3.  Schematic of collinear dual-pulse LIBS. The femtosecond system produces 50 femtosecond laser with the output energy 800 mJ in 800 nm[8]

    图  4  双脉冲飞秒激光得到的延迟和增强因子的关系图[9]

    Figure  4.  Reltionship of enhancement factor and the delay time between laser pulses obtained by femtosecond dual-pulse laser[9]

    图  5  双脉冲和单脉冲飞秒激光得到的Cu 515.234 nm谱线的半高宽随时间变化情况。在小于100 ns出现非线性变化[11]

    Figure  5.  Comparison of FWHM(Cu at 515.234 nm) obtained by single-pulse and dual-pulse respectively. There is a relation of nonlinear occurring when time less than 100 ns[11]

    图  6  高压放电脉冲辅助LIBS系统示意,激光器为Nd:YAG 1 064 nm被动调Q激光器(Lumonics YM-200),脉宽20 ns(X1=2.5 mm,X2=37 mm,X3=3.6 mm,X4=2.2 mm)[14]

    Figure  6.  LIBS system assisted by high-voltage pulse spark discharge. The laser used in experiment is Q-switched Nd:YAG 1 064 nm(Lumonics YM-200), and the pulse width 20 ns(X1=2.5 mm, X2=37 mm, X3=3.6 mm, X4=2.2 mm)[14]

    图  7  放电增强光谱信号的实验主体部分,其中金属电极含2%的铈和98%的钨。激光仍为被动调Q 1 064 nm固体激光器[15]

    Figure  7.  Main part of LIBS system assisted by spark discharge. The alloy electrodes both consist of 2% cerium and 98%tungsten. The laser is still Q-switched 1 064 nm laser[15]

    图  8  被动放电辅助增强LIBS装置示意,激光器为Nd:YAG 532 nm被动调Q激光(EM:能量检测;PD:光敏二极管;BS:分束镜;Scope:示波器)[20]

    Figure  8.  LIBS system assisted by passive discharge instrument. The laser is Q-switched Nd:YAG 532 nm(EM:energy meter; PD:photodiode; BS:beam splitter; Scope:oscilloscope)[20]

    图  9  限域和放电脉冲联合增强LIBS光谱信号装置,LIBS系统所用的是澳大利亚产的LIBS系统(XRF, Spectrolaser 4000,澳大利亚),激光器为Nd:YAG 532 nm被动调Q激光器[21]

    Figure  9.  Combining the spatial and spark discharge assistant LIBS system. A Spectrolaser 4000 LIBS system(XRF, Australia) was used in the experiment including the Q-switched Nd:YAG 532 nm laser[21]

    图  10  铜制微腔限域LIBS系统示意,使用Nd:YAG 1 064 nm被动调Q固体激光器,脉宽~10 ns, 输出能量400 mJ/束[23]

    Figure  10.  Micro-unit used to confine the plasma in LIBS system, in which the laser is Nd:YAG 1 064 nm Q-switched laser with the ~10 ns pulse width and 400 mJ energy output[23]

    图  11  半球形限域微腔的LIBS系统示意,激光器采用三次谐波的Nd:YAG 1 064 nm被动调Q激光器(Quantel Brilliant, 脉宽:5 ns)重复频率为10 Hz。激光能量密度控制在42.9 J/cm2。限域微腔直径为5, 6, 7, 8 mm可调[24]

    Figure  11.  Hemispherical cavities system of confined LIBS. The laser consisted of a third harmonic Q-swathed Nd:YAG 355 nm laser(Quantel Brilliant, pulse duration:5 ns), and the repetition rate is 10 Hz with the energy density output 42.9 J/cm2. The diameter of confined cavities is adjustable such as 5, 6, 7, 8 mm[24]

    图  12  半球形限域系统的具体构成示意[25]

    Figure  12.  Diagram of hemispherical confined LIBS system[25]

    图  13  共线双脉冲限域LIBS系统,两台激光器都采用Nd:YAG 1 064 nm被动调Q激光器,重复频率为1 Hz,脉宽为10 ns。激光输出能量为0~180 mJ可调,试验中为20 mJ[26]

    Figure  13.  Collinear dual pulse and spatial confined LIBS system. Both the laser used in the lab are Q-switched Nd:YAG 1 064 nm laser(10 ns pulse width) and the repetition rate is 1 Hz with the output energy 0~180 mJ, while each laser energy used only 20 mJ actually[26]

    图  14  利用朗缪尔探针来研究等离子体在限域条件下的各种参数变化情况图示,图中左上角为矩形限域微腔,左下角是朗缪尔探针的构成示意。其中诱导等离子体激光为脉冲激光Nd:YAG 1 064 nm(SpectronTM, SL800),脉宽为18 ns,输出能量为160 mJ/束,重复频率为10 Hz[28]

    Figure  14.  Langmuir probe combining rectangular spatial confined LIBS system. The rectangular confined cavities is shown in the upper-left inset, and the Langmuir probe is shown in the lower left. The laser used pulsed laser Nd:YAG 1 064 nm(SpectronTM, SL800), pulse width is 18 ns and the energy output 160 mJ with the repetition 10 Hz[28]

    图  15  Cu片样品在柱形限域微腔下的随收集延迟的光谱强度变化曲线。所用激光为Nd:YAG 1064 nm,脉宽为10 ns,重复频率为10 Hz,所用能量为98 mJ[29]

    Figure  15.  Spectrum of Cu plasma with cylindrical cavity confinement. The laser used in the experiment is Nd:YAG 1064 nm and the pulse width 10 ns, repetition rate 10Hz and the energy output 98 mJ[29]

    图  16  研究不同能级的限域增强因子的实验图,所用激光器KrF准分子激光器(Lambda Physik,Compex 205)248 nm, 脉宽为23 ns脉冲激光器,输出激光经过聚焦后能量密度为10 J cm-2[30]

    Figure  16.  Diagram of a spatial confined LIBS. The KrF excimer laser was used in the experiment(Lambda Physik, Compex 205), the pulse width is 23 ns with the output energy density 10 J cm-2 which has been focused[30]

    图  17  使用聚四氟乙烯为限域微腔的LIBS系统部分示意,激光器为Nd:YAG 532 nm被动调Q脉冲激光器,脉宽为5 ns, 激光能量为80 mJ和130 mJ可选[31]

    Figure  17.  A part of confined LIBS system using the polytetrafluoroethylene(PTFE) as confined unit. The laser is Nd:YAG 532 nm Q-switched pulsed laser with the pulse width 5 ns, and the output energy is alternative with 80 mJ and 130 mJ[31]

    图  18  不同尺寸柱形微腔限域的LIBS系统示意,激发光源为Nd:YAG 1064 nm被动调Q激光器,脉宽为4 ns,输出能量50mJ/束。图中光纤为20个光纤纵向排列的光线束[32]

    Figure  18.  Spatial confined LIBS system with different size of confinement unit. The excitation source is Q-switched Nd:YAG 1064 nm laser, the pulse width is 4 ns with the energy output 50 mJ. The fiber bundle shown in the pic is consisted of 20 fibers[32]

    图  19  碗状限域微腔的LIBS示意,激光器采用Nd:YAG 532 nm被动调Q激光器,重复频率为1 Hz[33]

    Figure  19.  Spatial confined LIBS with bowl-shape unit. The laser is Nd:YAG 532 nm with the repetition rat 1 Hz[33]

    图  20  激光投影成像LIBS限域系统示意,包括一台投影激光器Nd:YAG 532 nm, 脉宽为500 ps的被动调Q光器(Quantel, France),一台烧蚀激光器:Nd:YAG 1 064 nm被动调Q(Beamtech, China),脉宽8 ns,输出能量控制在30 mJ/束[34]

    Figure  20.  Diagram of shadowgraph LIBS confined system, including a shadowgraph laser:Q-switched Nd:YAG 532 nm(Quantel, France) and the pulse width 500 ps. Another is plasma induced laser:Q-switched Nd:YAG 1 064 nm(Beamtech, China) with the pulse width 8 ns and 30 mJ energy output[34]

    图  21  不同延迟不同限域直径条件下得到的光谱强度的变化图,激发光源为KrF:248 nm准分子激光器(Lambda Physik, Compex 205, 脉宽23 ns),输出激光能量100~600 mJ可调[36]

    Figure  21.  Diagram of spatial confined LIBS with different pipe diameter and different delay time. The laser is KrF excimer 248 nmLambda Physik, Compex 205, wavelength 248 nm, pulse duration 23 ns) and the energy output is 100~600 mJ alternative[36]

    图  22  利用PBD方法探测激波传播规律得到的谱图,图中数字显示了探测距离在样品上方不同距离处,插图为左侧尖峰簇的放大[38]

    Figure  22.  Picture of shock wave propagating, in which the four numbers are the detected distance from the surface of sample respectively, and inset shows the enlarge view of the peaks[38]

    图  23  MD模拟得到的(a)激波前沿温度随时间的变化;(b)激波前沿附近原子数密度随时间变化的谱图[39-41]

    Figure  23.  Diagram of simulation. (a)The temperature varies in time of shock wave front and (b)the atomic number density around shock wave varies in time[39-41]

    图  24  磁场束缚等离子体装置,所用Nd:YAG 532 nm被动调Q激光器,3~5 ns脉宽,输出激光能量为~400 mJ。所加磁场强度为~0.6 T[48]

    Figure  24.  Instrument of LIBS assisted by magnetic confinement. The laser used in the experiment is Q-switched Nd:YAG 532 nm laser, the pulse width is 3~5 ns with the energy output ~400 mJ. The magnetic field ~0.6 T was produced between the poles[48]

    图  25  磁场束缚等离子体示意,该实验中用KrF:248 nm准分子激光器(Lambda Physik, Compex 205),脉宽23 ns[53]

    Figure  25.  Diagram of plasma confined by magnetic field. The excimer laser KrF:248 nm(Lambda Physik, Compex 205) was used in the case, and the pulse width is 23 ns[53]

    图  26  磁环束缚等离子体LIBS系统示意,激光器所用为Nd:YAG 532 nm,脉宽5 ns,输出能量为~400 mJ[57]

    Figure  26.  LIBS system assisted by ring-magnet confinement. The frequency doubled Nd:YAG 532 nm laser was used in the experiment and the pulse width is 5 ns with the output energy ~400 mJ[57]

    图  27  研究磁场束缚LIBS的装置,球形腔体可以提供不同的气体和气压环境,所用激光器为Nd:YAG 1 064 nm被动调Q激光器,脉宽10 ns[58]

    Figure  27.  Instrument of LIBS combining the magnetic confinement, in which the different gas and pressure were provided by the spherical cavity. The laser is Q-switched Nd:YAG 1 064 nm laser with the pulse width 10 ns[58]

    图  28  微波系统的细节图, 烧蚀激光采用Nd:YAG 1 064 nm激光器,脉宽5 ns,最大输出能量为300 mJ[60]

    Figure  28.  Detail of the microwave system. The laser used for ablating sample is Nd:YAG 1 064 nm laser with the max energy output 300 mJ and pulse width 5 ns[60]

    图  29  框型回路微波辅助LIBS系统,用Nd:YAG 532 nm激光器烧蚀样品,脉宽10 ns,所用能量为5 mJ[62-63]

    Figure  29.  LIBS system assisted by a loop antenna. The laser Nd:YAG 532 nm with pulse width 10 ns and 5 mJ energy was used for ablating Gd2O3[57-58]

    图  30  近场辐射器尖端和等离子体关系示意,烧蚀激光用Nd:YAG 1 064 nm被动调Q激光器,脉宽6 ns。微波产生器发生2.45 GHz,最大功率为3000 W的微波[65]

    Figure  30.  Relation between near-field applicator(NFA) and plasma. The laser used in the experiment is Q-switchedNd:YAG 1 064 nm with pulse width 6 ns. The microwave is 2.45 GHz with maximum power 3000 watts[65]

    表  1  4种增强方法的数据对比

    Table  1.   Comparison of four enhancement methods

    待测样品 待测元素 所用方法 增强因子 效果
    钢样 Fe ns双脉冲(1 064 nm, 1 064 nm) 6~8 光谱RSD从5.0%↓2%[1]
    CuCl2溶液 Cu ns双脉冲(1 064 nm, 1 064 nm) / 从几十到几百mg/L ↓2 mg/L[2-3]
    CuSO4溶液 Cu ns双脉冲(532 nm, 532 nm) ~2 LOD=9.87mg/L, 是传统6倍[4]
    Ni棒 Ni 800 nm钛宝石fs激光器 10[5] /
    铜样 Cu 248 nm, fs激光器 9.5 34%↓9%
    Zn 7.2 25%↓8%
    铁样 Fe 9.1 RSD[8]26%↓12%
    铝样 Al 5.6 43%↓14%
    硫酸盐 Ba 8.1 22%↑25%
    Si 4.3 32%↓9%
    铜样 Cu 60 ns脉宽放电辅助 150~400 S/N↑~6倍[11]
    铝样 Al
    土壤 Pb,Mg,Sn μs脉宽放电辅助 / RSD:2%↓,LOD:
    1.5 μg/g,34 μg/g,0.16 μg/g[13]
    硅样 Si ns脉宽放电辅助 / S/N↑~3倍[15]
    铝样 Mg
    Al
    500 ns脉宽放电辅助 ~15
    ~5
    S/N↑~3[17]
    钢样
    土壤
    Fe
    Fe,As
    铜制柱形微腔 ~10
    3~5
    /
    S/N: 58±2↑143±5
    钢样 V 铝制半球形微腔 ~4.2 定标R2=0.946↑0.981[20]
    土壤 Cd 半球形微腔 3~5 RSD:6.7%↓4.31%,
    LOD: 10 mg/kg↓[21]
    硅样
    铜样
    Si
    Cu
    铝制柱形微腔 1.5~3
    2.5
    S/N:↑~2倍[22]
    RSD:~2[23]
    煤样 C PTFE柱形微腔 ~2 RSD:↓21%和↓36%[27]
    煤样 C PTFE柱形微腔 / 定标R2=0.90↑0.99,
    RMSEP= 2.24%↓1.63%[31]
    铝合金
    锰溶液
    多种元素
    Mn
    均匀磁场束缚, 0.5T 1.2~2[46-47] /
    钢样 V,Mn 均匀磁场束缚,~0.4T ~2 LOD: 41和56 ppm↓11和30 ppm[52]
    铝陶瓷
    土壤
    Na
    Cu,Ag
    微波辅助 33
    /
    光辐射寿命从几百μs↑20个ms[55]
    LOD: 30 mg/kg和23.3 mg[56]
    放射性氧化物Gd2O3 Cd 微波辅助 32 LOD: 48 mg/kg↓2 mg/kg[57][58]
    InCl3溶液中
    固体Cu/Al2O3
    In
    Cu
    微波辅助 60
    ~100
    LOD:为传统的11.5倍[59]
    LOD:为传统的93倍[60]
    下载: 导出CSV
  • [1] 侯冠宇, 王平, 佟存柱.激光诱导击穿光谱技术及应用研究进展[J].中国光学, 2013, 6(4):490-500. http://www.chineseoptics.net.cn/CN/abstract/abstract9001.shtml

    HOU G Y, WANG P, TONG C ZH. Progress in laser-induced breakdown spectroscopy and its applications[J]. Chinese Optics, 2013, 6(4):490-500.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9001.shtml
    [2] 王琦, 董凤忠, 梁云仙.再加热双脉冲与单脉冲激光诱导Fe等离子体发射光谱实验对比研究[J].光学学报, 2011, 31(10):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201110051.htm

    WANG Q, DONG F ZH, LIANG Y X. Experiment comparison investigation on emission spectra of reheating double and single pulses laser-induced Fe plasma[J]. Acta Optica Sinica, 2011, 31(10):1-7.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201110051.htm
    [3] YU Y, ZHOU W D, SU X J. Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy[J]. Optics Communications, 2014, 333(333):62-66.
    [4] FECHET P, MAUCHIEN P, WANGNER J F. Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy[J]. Analytica Chimica Acta, 2001, 429(2):269-278. doi: 10.1016/S0003-2670(00)01277-0
    [5] 胡振华, 张巧, 丁蕾.液体中Cu元素双脉冲激光诱导击穿光谱测量研究[J].量子电子学报, 2014, 31(1):99-106. http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710009&dbname=CJFDPREP

    HU ZH H, ZHANG Q, DING L. Anaylysis of Cu in liquid jet using double pulse laser induced breakdown spectroscopy[J]. Chinese J. Quantum Electronics, 2014, 31(1):99-106.(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710009&dbname=CJFDPREP
    [6] 伏再喜, 张先燚, 李庆.Ni原子双飞秒脉冲激光诱导击穿光谱的信号增强研究[J].原子与分子物理学报, 2011, 28(6):1061-1066. http://www.cnki.com.cn/Article/CJFDTOTAL-YZYF201106016.htm

    FU Z X, ZHANG X Y, LI Q. Investigation on the signal enhancement of the double fetosecond pulse laser-induced breakdown spectroscopy of nickel[J]. J. Atomic and Molecular Physics, 2011, 28(6):1061-1066, (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YZYF201106016.htm
    [7] 王猛猛. 双脉冲飞秒激光诱导击穿光谱的研究[D]. 北京: 北京理工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10007-1016710571.htm

    WANG M M. Double pulse femtosecond laser induced breakdown spectroscopy[D]. Beijing:Beijing Insititute of Technology, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10007-1016710571.htm
    [8] SCHIFFERN J T, DOERR D W, ALEXANDER D R. Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2007, 62(12):1412-1418. doi: 10.1016/j.sab.2007.10.042
    [9] PINON V, FOTAKIS C, NICOLAS G. Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2008, 63(10):1006-1010. doi: 10.1016/j.sab.2008.09.004
    [10] AHMED R, BAIG M A. A comparative study of enhanced emission in double pulse laser induced breakdown spectroscopy[J]. Optics & Laser Technology, 2015, 65:113-118.
    [11] PINON V, ANGLOS D. Optical emission studies of plasma induced by single and double femtosecond laser pulses[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2009, 64(10):950-960. doi: 10.1016/j.sab.2009.07.036
    [12] CHICHKOV B N, MOMMA C, ALVENSLEBEN F V. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2):109-115. doi: 10.1007/BF01567637
    [13] GAMALY E G, RODE A V, TIKHONCHUK V T. Electrostatic mechanism of ablation by femtosecond lasers[J]. Applied Surface Science, 2002, 9(1):699-704. http://www.academia.edu/12184598/Electrostatic_mechanism_of_ablation_by_femtosecond_lasers
    [14] NASSEF O A, ELSAYED H E. Spark discharge assisted laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2005, 60(12):1564-1572. doi: 10.1016/j.sab.2005.10.010
    [15] ZHOU W D, LI K X, SHEN Q. Optical emission enhancement using laser ablation combined with fast pulse discharge[J]. Optics Express, 2010, 18(3):2573-2578. doi: 10.1364/OE.18.002573
    [16] LI X, ZHOU W D, LI K X. Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil[J]. Optics Communications, 2012, 285(1):54-58. doi: 10.1016/j.optcom.2011.08.074
    [17] ZHOU W D, QIAN H, REN Z. Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy[J]. Applied Optics, 2012, 51(7):42-48. doi: 10.1364/AO.51.000B42
    [18] ZHOU W D, SU X J, QIAN H. Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma[J]. J. Analytical Atomic Spectrometry, 2013, 28(5):702-710. doi: 10.1039/c3ja30355a
    [19] VINIC M, IVKOVIC M. Spatial and temporal characteristics of laser ablation combined with fast pulse discharge[J]. IEEE Transactions on Plasma Science, 2014, 42(10):2598-2599. doi: 10.1109/TPS.2014.2330372
    [20] SOBBRAL H, ROBLEDO M A. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2016, 124:67-73. doi: 10.1016/j.sab.2016.08.017
    [21] HOU Z, WANG Z, LIU J. Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy[J]. Optics Express, 2014, 22(11):12909-14. doi: 10.1364/OE.22.012909
    [22] 陈金忠, 马瑞玲, 陈振玉.碳室约束对激光等离子体辐射的增强效应[J].光学精密工程, 2013, 21(8):1942-1948. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201308005.htm

    CHEN J ZH, MA R L, CHEN ZH Y. Enhancement effect of carbon chamber confinement on laser plasma radiation[J]. Opt. Precision Eng., 2013, 21(8):1942-1948.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201308005.htm
    [23] POPOV A M, COLAO F, FANTONNI R. Enhancement of LIBS signal by spatially confining the laser-induced plasma[J]. J. Analytical Atomic Spectrometr, 2009, 24(5):602-604. doi: 10.1039/b818849a
    [24] GUO L B, HAO Z Q, SHEN M. Accuracy improvement of quantitative analysis by spatial confinement in Laser induced breakdown spectroscopy[J]. Optics Express, 2013, 21(15).
    [25] MENT D S, ZHAO N J, MA M J. Heavy metal detection in soils by LIBS using hemispherical spatial confinement[J]. Plasma Science and Technology, 2015, 17(8):632-637. doi: 10.1088/1009-0630/17/8/04
    [26] SU X, ZHOU W D, QIAN H. Optical emission character of collinear dual pulse laser plasma with cylindrical cavity confinement[J]. J. Analytical Atomic Spectrometry, 2014, 29(12):2356-2361. doi: 10.1039/C4JA00296B
    [27] SU X J, ZHOU W D, QIAN H. Optimization of cavity size for spatial confined laser-induced breakdown spectroscopy[J]. Optics Express, 2014, 22(23):28437-28442. doi: 10.1364/OE.22.028437
    [28] SINGH S C, FALLON C, HAYDEN P. Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas[J]. Physics Plasmas, 2014, 21(9):897-902. http://www.academia.edu/23089748/Ion_flux_enhancements_and_oscillations_in_spatially_confined_laser_produced_aluminum_plasmas
    [29] WANG Y, CHEN A, LI S. Two sequential enhancements of laser-induced Cu plasma with cylindrical cavity confinement[J]. J. Analytical Atomic Spectrometry, 2016, 31:1974-1977. doi: 10.1039/C6JA00260A
    [30] LI C, GUO L B, HE X. Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement[J]. J. Analytical Atomic Spectrometry, 2014, 29(4):638-643. doi: 10.1039/c3ja50368b
    [31] WANG Z, HOU Z, LIU S L. Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal[J]. Optics Express, 2012, 20(23):1011-1018. http://adsabs.harvard.edu/abs/2012OExpr..20A1011W
    [32] LI X, WANG Z, MAO X. Spatially and temporally resolved spectral emission of laser-induced plasmas confined by cylindrical cavities[J]. J. Analytical Atomic Spectrometry, 2014, 2(3):213-218.
    [33] YIN H, HOU Z, WANG Z. Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability[J]. J. Analytical Atomic Spectrometry, 2015, 30(4):922-928. doi: 10.1039/C4JA00437J
    [34] FU Y, HOU Z, WANG Z. Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy[J]. Optics Express, 2016, 24(3):3055-3066. doi: 10.1364/OE.24.003055
    [35] LI X, YIN H, WANG Z.Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2015, 111(4):102-107.
    [36] SHEN X K, LING H, LU Y F. Laser-induced breakdown spectroscopy with high detection sensitivity[J]. SPIE, 2009, 7202:7202D-1-11. https://nebraska.pure.elsevier.com/en/publications/laser-induced-breakdown-spectroscopy-with-high-detection-sensitiv
    [37] SHEN X K, SUN J, LING H. Spatial confinement effects in laser-induced breakdown spectroscopy[J]. Applied Physics Letters, 2007, 91(8):081501-081501-3. doi: 10.1063/1.2770772
    [38] HUANG F, LIANG P, YANG X.Confinement effects of shock waves on laser-induced plasma from a graphite target[J]. Physics Plasmas, 2015, 22(6):063509-1-7. doi: 10.1063/1.4922850
    [39] LI C, WANG J, WANG X. Shock wave confinement-induced plume temperature increase in laser-induced breakdown spectroscopy[J]. Physics Letters A, 2014, 378(45):3319-3325. doi: 10.1016/j.physleta.2014.06.049
    [40] GACEK S, WANG X. Dynamics evolution of shock waves in laser material interaction[J]. Applied Physics A, 2008, 94(3):675-690. doi: 10.1007%2Fs00339-008-4958-4.pdf
    [41] LI C, ZHANG J, WANG X. Phase change and stress wave in picosecond laser material interaction with shock wave formation[J]. Applied Physics A, 2013, 112(3):677-687. doi: 10.1007/s00339-013-7770-8
    [42] MARPAUNG A M, KURNIAWAN H, TJIA M O. Comprehensive study on the pressure dependence of shock wave plasma generation under TEA CO2 laser bombardment on metal sample[J]. J. Physics D Applied Physics, 2001, 34(34):758-771. doi: 10.1007/s00231-010-0742-z
    [43] MARPAUNG A M, HEDWIG R, PARDEDE M. Shock wave plasma induced by TEA CO2 laser bombardment on glass samples at high pressures[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2000, 55(55):1591-1599. http://unsyiah.academia.edu/NasrullahIdris
    [44] BOBIN J L, DURAND Y A, LANGER P P. Shock-wave generation in rarefied gases by laser impact on beryllium targets[J]. J. Applied Physics, 1968, 39(9):4184-4189. doi: 10.1063/1.1656945
    [45] NEOGI A, THAREJA R K. Dynamics of laser produced carbon plasma expanding in a nonuniform magnetic field[J]. J. Applied Physics, 1999, 85(2):1131-1136. doi: 10.1063/1.369238
    [46] BEHERA N, SINGH R K, KUMAR A. Dynamics and structural behaviour of laser induced plasma in transverse magnetic field[C]. DAE-BRNS National Laser Symposium(NLS-23), S.V. University, Tirupati, India, 3-6 Dec 2014, 2014.
    [47] BEHERA N, SINGH R K, KUMAR A. Confinement and re-expansion of laser induced plasma in transverse magnetic field:Dynamical behaviour and geometrical aspect of expanding plume[J]. Physics Letters A, 2015, 379(37):2215-2220. doi: 10.1016/j.physleta.2015.04.042
    [48] RAI V N, SINGH P J, YUEH F Y. Dynamics, stability and emission of radiation from laser produced plasma expanding across an external magnetic field[J]. Casopís Lékarů Ceských, 2001, 113(1):281-2822.
    [49] RAI V N, VIRENDRA N, SINGH P. Study of optical emission from laser-produced plasma expanding across an external magnetic field[J]. Laser & Particle Beams, 2003, 21(1):65-71.
    [50] RAI V N, RAI A K, YUEH F Y. Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field[J]. Applied Optics, 2003, 42(12):2085-2093. doi: 10.1364/AO.42.002085
    [51] MASON K J, GOLDBERG J M. Characterization of a laser plasma in a pulsed magnetic field. part Ⅰ:spatially resolved emission studies[J]. Applied Spectroscopy, 1991, 45(3):370-379. doi: 10.1366/0003702914337362
    [52] RAI V N, SHUKLA M, PANT H C. An X-ray biplanar photodiode and the X-ray emission from magnetically confined laser produced plasma[J]. Pramana, 1999, 52(1):49-65. doi: 10.1007/BF02827601
    [53] SHEN X K, LU Y F, CEBRE T. Magnetically-confined laser-induced breakdown spectroscopy[C]. Cnference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, IEEE, 2006, DOI:10.1109/CLEO.2006.4628591.
    [54] SINGLETON J, MIELKE C H, MIGLIORI A. The national high magnetic field laboratory pulsed-field facility at los alamos national laboratory[J]. Physica B Condensed Matter, 2004, 346-347:614-617. doi: 10.1016/j.physb.2004.01.068
    [55] SHEN X K, LU X F, GEBRE T. Optical emission in magnetically confined laser-induced breakdown spectroscopy[J]. J. Applied Physics, 2006, 100(5):053303-053303-7. doi: 10.1063/1.2337169
    [56] HARILAL S S, TILLACK M S, OSHAY B. Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 69:02613-02613-11.
    [57] HAO Z, GUO L B, LI C. Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement[J]. J. Analytical Atomic Spectrometry, 2014, 29(12):2309-2314. doi: 10.1039/C4JA00144C
    [58] ARSHAD A, BASHIR S, HAYAT A. Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma[J]. Applied Physics B, 2016, 63(3):1-10. http://adsabs.harvard.edu/abs/2016ApPhB.122...63A
    [59] LKEDA Y, KANEKO M. Microwave-enhanced laser-induced breakdown spectroscopy[C]. Laser Techniques to Fluid Mechanics, Lisbon, Lisbon, Portuga, 2008:1-9.
    [60] LIU Y, MATTHICU B, MARTIN R. Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy:Evaluation on ceramics[J]. J. Analytical Atomic Spectrometry, 2010, 25(8):1316-1323. doi: 10.1039/c003304a
    [61] LIU Y, BOUSQUET B, BAUDELET M. Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2012, 73(73):89-92.
    [62] KHUMAENI A, MOTONOBU T, KATSUAKI A. Enhancement of LIBS emission using antenna-coupled microwave[J]. Optics Express, 2013, 21(24):29755-68. doi: 10.1364/OE.21.029755
    [63] TAMOP M, MIYABE M, AKAOKA K. Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling[J]. J. Analytical Atomic Spectrometry, 2014, 29(5):886-892. doi: 10.1039/C3JA50259G
    [64] WALL M, SUN A, ALWAHABI Z T. Quantitative detection of metallic traces in water-based liquids by microwave-assisted laser-induced breakdown spectroscopy[J]. Optics Express, 2016, 24(2):1507-1517. doi: 10.1364/OE.24.001507
    [65] VILJANEN J, SUN Z, ALWAHABI Z T. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2016, 118:29-36. doi: 10.1016/j.sab.2016.02.002
  • 加载中
图(30) / 表(1)
计量
  • 文章访问数:  1697
  • HTML全文浏览量:  420
  • PDF下载量:  304
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-11
  • 修回日期:  2017-08-13
  • 刊出日期:  2017-10-01

目录

    /

    返回文章
    返回