留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹大气遥感技术

胡伟东 季金佳 刘瑞婷 王雯琦 LeoP.LIGTHART

胡伟东, 季金佳, 刘瑞婷, 王雯琦, LeoP.LIGTHART. 太赫兹大气遥感技术[J]. 中国光学, 2017, 10(5): 656-665. doi: 10.3788/CO.20171005.0656
引用本文: 胡伟东, 季金佳, 刘瑞婷, 王雯琦, LeoP.LIGTHART. 太赫兹大气遥感技术[J]. 中国光学, 2017, 10(5): 656-665. doi: 10.3788/CO.20171005.0656
HU Wei-dong, JI Jin-jia, LIU Rui-ting, WANG Wen-qi, Leo P. LIGTHART. Terahertz atmosphere remote sensing[J]. Chinese Optics, 2017, 10(5): 656-665. doi: 10.3788/CO.20171005.0656
Citation: HU Wei-dong, JI Jin-jia, LIU Rui-ting, WANG Wen-qi, Leo P. LIGTHART. Terahertz atmosphere remote sensing[J]. Chinese Optics, 2017, 10(5): 656-665. doi: 10.3788/CO.20171005.0656

太赫兹大气遥感技术

doi: 10.3788/CO.20171005.0656
基金项目: 

国家自然科学基金重大科研仪器项目 61527805

国家自然科学基金群体项目 61421001

高等学校创新引智计划资助项目 B14010

详细信息
    作者简介:

    胡伟东(1975-), 男, 山西应县人, 博士, 教授, 博士生导师, 主要从事太赫兹遥感技术方面的研究

    LeoP.LIGTHART:Leo P. Ligthart,荷兰代尔夫特理工大学荣誉教授,2001年当选为电气与电子工程师学会会士、IET会士,欧空局特聘专家;2003年俄罗斯运输科学院院士。2014年,北京理工大学外聘教授,进入教育部“111”引智计划,北京理工大学外籍专家,主要从事无线电传播、多功能天线、多参数雷达、MIMO雷达、大气遥感、毫米波与太赫兹技术等方面的研究

    通讯作者:

    胡伟东, E-mail:hoowind@bit.edu.cn

  • 中图分类号: TP722.6

Terahertz atmosphere remote sensing

Funds: 

Major Instrument Project of National Natural Science Fundation of China 61527805

Group Project of National Natural Science Fundation of China 61421001

Project of Innovation & Introduced Intelligence for colleges and universities of China B14010

More Information
  • 摘要: 由于其独特的大气敏感特性,太赫兹波在大气遥感领域起着越来越重要的作用。国际上太赫兹大气遥感技术发展方兴未艾。2004年,美国NASA发射AURA卫星,探测仪器中包括了具有两种极化的2.5 THz辐射计;2007年,欧空局ESA研制了Marschals外差式光谱仪,采用临边探测方式探测气体成分在亚毫米波段热辐射的高光谱。我国在轨气象卫星风云三号已经具备毫米波段辐射计,风云四号卫星是世界上首颗搭载太赫兹遥感仪的地球静止轨道气象卫星。针对我国大气遥感的现状,在概述国内外太赫兹遥感应用和技术的基础上,提出发展自主知识产权的大气遥感技术的思路;大力发展自主知识产权的太赫兹关键器件、太赫兹探测仪系统集成,研究太赫兹大气探测的新原理和反演新方法,整体提升我国在大气遥感领域的技术水平。
  • 图  1  大气分层结构

    Figure  1.  Layered structure of atmosphere

    图  2  UARS卫星

    Figure  2.  UARS satellite

    图  3  亚毫米波天文卫星(SWAS)

    Figure  3.  Submillimeter Wave Astronomy Satellite

    图  4  Herschel卫星搭载的固态太赫兹倍频源

    Figure  4.  Solid state terahertz frequency doubled source carried by Herschel

    图  5  微波温度计实物

    Figure  5.  Photos of microwave thermometers

    图  6  风云四号卫星

    Figure  6.  Photo of FY-4 Satellite

    图  7  SWCIR设计图

    Figure  7.  Schematic diagram of SWCIR

    图  8  圆锥扫描亚毫米波成像辐射计(CoSSIR)

    Figure  8.  Photo of conical scanning sub-millimeter-wave imaging radiometer

    表  1  各频段辐射计与主要探测目标的关系

    Table  1.   The relationship between radiometer and main detection targets at each band

    辐射计频段 主要探测目标
    118 GHz O2
    183 GHz H2O、HNO3、冰云、
    压力切向分布、上对流层的水
    190 GHz H2O、HNO3
    240 GHz CO、O3
    325 GHz H2O
    424 GHz O2
    487 GHz O2
    556 GHz H2O
    640 GHz HCl、ClO、N2O、H2O
    2.5 THz OH
    下载: 导出CSV
  • [1] YAO J Q, WANG J L, ZHONG K, et al.. Study and outlook of THz radiation atmospheric propagation[J]. Journal of Optoelectronics·Laser, 2010, 21(10):1582-1588.(in Chinese)
    [2] PETER H S. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3):910-928. doi: 10.1109/22.989974
    [3] ZHANG J Q, XUE CH, GAO G, et al.. Development and trend of cloud and aerosol optical remote sensing instrument[J]. Chinese Optics, 2015, 8(5):679-698. doi: 10.3788/co.
    [4] HU X H, LIU S T, PAN ZH D, et al.. The development of spaceborne shimmer detection instrument and its data application[J]. Chinese Optics, 2015, 8(3):350-359. doi: 10.3788/co.
    [5] KLEIN U. Future satellite earth observation requirements and technology in millimetre and sub-millimetre wavelength region[C]. The 17th Int Symp on Space THz Technology, Paris, France, 2006:21-28.
    [6] SOHN B J, CHUNG E S, SCHMETZ J, et al.. Estimating upper-tropospheric water vapor from SSM/T-2satellite measurements[J]. J. Appl. Meteor, 2003, 42:488-504. doi: 10.1175/1520-0450(2003)042<0488:EUTWVF>2.0.CO;2
    [7] CLERBAUX C, TURQUETY S, COHEUR P. Infrared remote sensing of atmospheric composition and air quality:towards operational applications[J]. Comptes Rendus Geoscience, 2010, 342(4):349-356.
    [8] WANG W, DONG J H, MENG Q Y. Development and trend of visible light remote sensing camera for Mars exploration[J]. Chinese Optics, 2014, 7(2):208-214.
    [9] YING Y B, WANG J P, JIANG H Y. Inspecting diameter and defect area of fruit with machine vision[J]. Transactions of the CSAE, 2002, 18(5):216-220.
    [10] WATERS J W, READ W G, FROIDEVAUX L, et al.. The UARS and EOS microwave limb sounder(MLS) experiments[J]. Journal of the Atmospheric Sciences, 1998, 56:194-218.
    [11] WATERS J W, PECKHAM G E. The microwave limb sounder(MLS) experiments for UARS and EOS[J]. The International Society for Optical Engineering, 1991:543-546.
    [12] PUMPHREY H C, CLARK H L, HARWOOD R S. Lower stratospheric water vapor measured by UARS MLS[J]. Geophysical Research Letters, 2000, 27(12):1691-1694. doi: 10.1029/1999GL011339
    [13] BARATH F T, CHAVEZ M C, COFIELD R E, et al.. The upper atmosphere research satellite microwave limb sounder instrument[J]. J. Geophys Res, 1993, 98(10):751-762.
    [14] BARON P, RICAUD P, et al.. Studies for the Odin sub-millimetre radiometer.Ⅱ:Retrieval methodology[J]. Canadian Journal of Physics, 2002, 80(4):341-356. doi: 10.1139/p01-150
    [15] URBAN J, LAUTIE N, LE FLOCHMOEZ E, et al.. Odin/SMR limb observations of stratospheric trace gases:validation of N2O[J]. Journal of Geophysical Research, 2005, 110:D09301-D09320. https://core.ac.uk/display/70561256
    [16] LI X Y, CHEN L F, SU L, et al.. Development of submillimeter wave edge detection[J]. Journal of Remote Sensing, 2013, 6:1325-1344.
    [17] YANG ZH D, LU N M, SHI J M, et al.. Overview of FY-3 satellite payload and ground application systems[J]. Meteorological Science and Technology, 2013, 4:6-12. http://www.sciencedirect.com/science/article/pii/B9780127999487000050
    [18] DONG Y H. FY-4 meteorological satellite and its application prospect[J]. Shanghai Aerospace, 2016, 2:1-8.
    [19] FRANKLIN E K, STEVEN J W, ANDREW J H, et al.. Submillimeter-wave cloud ice radiometer:simulations of retrieval algorithm performance[J]. Journal of Geophysical Research, 2002, 107(D3):4028-4048. doi: 10.1029/2001JD000709
    [20] VANEK M D, NOLT I G, TAPPAN N D, et al.. Far-infrared sensor for cirrus(FIRSC):an aircraft-based Fourier-transform spectrometer to measure cloud radiance[J]. Appl. Opt., 2001, 40(13):2169-2176. doi: 10.1364/AO.40.002169
    [21] EVANS K F, WANG J R, RACETTE P E, et al.. Ice cloud retrievals and analysis with the compact scanning submillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE[J]. American Meteorological Society, 2005, 44:839-859. https://espo.nasa.gov/attrex/content/Ice_Cloud_Retrievals_and_Analysis_with_the_Compact_Scanning_Submillimeter_Imaging_Radiometer
    [22] MARAZITA S M, BISHOP W L, HESLER J L, et al.. Integrated Ga As Schottky mixers by spin on dielectric wafer bonding[J]. IEEE Transactions on Electron Devices, 2000, 47(6):1152-1157. doi: 10.1109/16.842956
    [23] MARSH S, ALDERMAN B, MATHESON D, et al. Design of low-cost 183 GHz subharmonic mixers for commercial applications[J]. IET Circuits, Devices and Systems, 2007, 1(1):1-6 doi: 10.1049/iet-cds:20060212
    [24] TESSMANN A, LEUTHER A, SEHWOERER C, et al. Acoplanar 94 GHz low-noise amplifier MMIC using 0.07μm. metamorphie cascode HEMTs[C]. IEEE MTT-S International Microwave Symposium Digest, IEEE, 2003:1581-1584.
    [25] BRYERTON E W, MEI X, KIM Y M, et al.. A W-band Low-Noise Amplifier with 22K noise temperature[C]. IEEE MTT-S International Microwave Symposium Digest, Boston, USA, 2009:681-684.
    [26] LU D R, HSU Y C, KAO J C, et al.. A 75.5-to-120.5-GHz, high-gain CMOS low-noise amplifier[C]. IEEE MTT-S International Microwave Symposium Digest, Montreal, Canada, IEEE, 2012:1-3.
    [27] HROBAK M, STERNS M, SCHRAMM M, et al.. Planar zero bias Schottky diode detector operating in the E-and W-band[C]. 2013 European Microwave Conference(EuMC), IEEE, 2013:179-182.
    [28] LI S. Development of millimeter wave geophone[D]. Chengdu:University of Electronic Science and technology of China, 2008:59-77.
    [29] XUE W. W band broadband direct detection receiving front-end[D]. Chengdu:University of Electronic Science and technology of China, 2013:39-50.
    [30] AUSTON D H, SMITH P R. Cherenkov radiation from femtosecond optical pulses in elect ro-optic media[J]. Appl. Phys. Lett., 1984, 53(16):1555-1558. doi: 10.1103/PhysRevLett.53.1555
    [31] FATTINGER CH, GRISCHKOWSKY D. Point source terahertz optics[J]. Appl. Phys. Lett., 1988, 53(16):1480-1482. doi: 10.1063/1.99971
    [32] LEITENSTORFER S, HUNSCHE J, SHAH M C, et al.. Detectors and sources for ultrabroadband electro-optic sampling:experiment and theory[J]. Appl. Phys. Lett., 1999, 74(11):1516-1518. doi: 10.1063/1.123601
    [33] KONO S, TANI M, GU P, et al.. Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses[J]. Appl. Phys. Lett., 2000, 77(25):4104-4106. doi: 10.1063/1.1333403
    [34] HAJENIUS M. Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer[J]. Phys. Rev. Lett., 2006, 100(7):074507. https://repository.tudelft.nl/islandora/object/uuid:3c930069-6427-4fb0-a113-88758172c003/?collection=research
    [35] SEMENOV A D, HUBERS H W, RICHTER H. Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers[J]. IEEE Appl. Superconductivity, 2003, 13(2):168-171. doi: 10.1109/TASC.2003.813672
    [36] WHYBORN N D. Heterodyne instrument for FIRST(HIFI):preliminary design[J]. SPIE, 1998, 3357:336-347.
    [37] KOMIYAMA S, ASTAFIEV O, ANTONOV V V, et al.. A single-photon detector in the far-infrared range[J]. Nature, 2000, 403(6768):405-407. doi: 10.1038/35000166
    [38] ASTAFIEV O, KOMIYAMA S, KUT SUWA T, et al.. Single-photon detector in the microwave range[J]. Phys. Rev. Lett., 2002, 80(22):4250-4252.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2836
  • HTML全文浏览量:  337
  • PDF下载量:  639
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-11
  • 修回日期:  2017-08-13
  • 刊出日期:  2017-10-01

目录

    /

    返回文章
    返回