留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双压电片镜在同步辐射光源光学系统中的应用

金利民 罗红心 王劼 王纳秀 徐中民

金利民, 罗红心, 王劼, 王纳秀, 徐中民. 双压电片镜在同步辐射光源光学系统中的应用[J]. 中国光学(中英文), 2017, 10(6): 699-707. doi: 10.3788/CO.20171006.0699
引用本文: 金利民, 罗红心, 王劼, 王纳秀, 徐中民. 双压电片镜在同步辐射光源光学系统中的应用[J]. 中国光学(中英文), 2017, 10(6): 699-707. doi: 10.3788/CO.20171006.0699
JIN Li-min, LUO Hong-xin, WANG Jie, WANG Na-xiu, XU Zhong-min. Application of bimorph mirror in the optical system of synchrotron radiation light source[J]. Chinese Optics, 2017, 10(6): 699-707. doi: 10.3788/CO.20171006.0699
Citation: JIN Li-min, LUO Hong-xin, WANG Jie, WANG Na-xiu, XU Zhong-min. Application of bimorph mirror in the optical system of synchrotron radiation light source[J]. Chinese Optics, 2017, 10(6): 699-707. doi: 10.3788/CO.20171006.0699

双压电片镜在同步辐射光源光学系统中的应用

doi: 10.3788/CO.20171006.0699
基金项目: 

国家自然科学基金资助项目 11175243

详细信息
    作者简介:

    金利民(1984-), 男, 江苏盐城人, 博士, 助理研究员, 2009年、2012年分别于东华大学获得硕士、博士学位, 主要从事同步辐射光学与技术方面的研究。E-mail:lmjin@sinap.ac.cn

    徐中民(1977—),男,河南鲁山人,博士,研究员,2005年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事同步辐射光束线技术方面的研究

    通讯作者:

    徐中民, E-mail:xuzhongmin@sinap.ac.cn

  • 中图分类号: O434

Application of bimorph mirror in the optical system of synchrotron radiation light source

Funds: 

National Natural Science Foundation of China 11175243

More Information
  • 摘要: 介绍了双压电片镜自适应光学技术,同时为其在同步辐射光学领域中的应用与进一步发展提供前瞻性的思考与探索。根据目前已公开发表的相关文献资料,总结介绍了双压电片镜自适应光学技术,阐述了该技术的工作机理与关键参数,并对其在国际上具有代表性的同步辐射机构中的应用情况作出描述,并指出涉及的关键技术问题与未来的发展趋势:不仅要有效地解决"连接点效应"对双压电片镜技术的负面影响,还要实现亚微米乃至纳米级的聚焦光斑,这两项内容都是双压电片镜技术需要进一步解决的重要问题。未来,双压电片镜自适应光学技术可望在我国先进的第三代同步辐射装置-"上海光源(Shanghai Synchrotron Radiation Facility,SSRF)"二期工程建设中得到应用。

     

  • 图 1  BM结构示意图[12]

    Figure 1.  Schematic diagram of BM[12]

    图 2  安装于ESRF用于水平面上波荡器光源切向聚焦的BM[16]

    Figure 2.  BM which was used to tangentially focus the undulator source in the horizontal plane at ESRF[16]

    图 3  在SPring-8中安装于机械夹持机构内的BM[15]

    Figure 3.  BM which was installed in its mechanical holder at SPring-8[15]

    图 4  1 050 mm长,水平聚焦BM[17]

    Figure 4.  A 1 050 mm long, horizontally focusing BM[17]

    图 5  600 mm BM在施加100 V电压后弯曲半径的变化过程[17]

    Figure 5.  A 600 mm BM as a function of time after applying a voltage change of 100 V[17]

    图 6  BM镜面的波纹状起伏[20]

    Figure 6.  Corrugation of the optical surface on a BM[20]

    图 7  BM再次抛光前后的镜面面形误差曲线[17]

    Figure 7.  Slope error of the BM before and after re-polishing[17]

    图 8  BM再次抛光前(左)后(右)的X射线聚焦结果(DLS的I03光束线)[17]

    Figure 8.  Images of the focused X-ray beam at DLS I03 beamline, before(left) and after(right) re-polishing of BM[17]

    图 9  新一代BM(a)Thales-SESO示意图; (b)DLS实物图[20]

    Figure 9.  Next-generation BM. (a)Thales-SESO schematic diagram and (b)DLS real view[20]

  • [1] 麦振洪.同步辐射光源及其应用[M].北京:科学出版社, 2013.

    MAI ZH H. Synchrotron Radiation Light Source and Its Application[M]. Beijing:Science Press, 2013.(in Chinese)
    [2] 徐朝银.同步辐射光学与工程[M].合肥:中国科学技术大学出版社, 2013:43-53.

    XU CH Y. Optics and Engineering of Synchrotron Radiation[M]. Hefei:University of Science and Technology of China Press, 2013:43-53.(in Chinese)
    [3] 罗红心, 王劼, 肖体乔.同步辐射用光学元件的检测[J].中国激光, 2009, 36(s2):134-139. http://www.opticsjournal.net/abstract.htm?id=oj0912300002546b8eah

    LUO H X, WANG J, XIAO T Q. Optical elements metrology in synchrotron radiation[J]. Chinese J. Lasers, 2009, 36(s2):134-139.(in Chinese) http://www.opticsjournal.net/abstract.htm?id=oj0912300002546b8eah
    [4] 林维豪, 罗红心, 宋丽, 等.同步辐射用光学元件面形绝对检测方法的研究[J].光学学报, 2012, 32(9):0912005-1. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxxb201209021&dbname=CJFD&dbcode=CJFQ

    LIN W H, LUO H X, SONG L, et al.. Absolute flatness measurement of optical elements in synchrotron radiation[J]. Acta Optica Sinica, 2012, 32(9):0912005-1.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxxb201209021&dbname=CJFD&dbcode=CJFQ
    [5] 曲艳峰, 吕丽军.同步辐射仪器中柔性铰链压弯机的研究[J].光学 精密工程, 2002, 10(2):220-225. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxjm200202019&dbname=CJFD&dbcode=CJFQ

    QU Y F, LV L J. Research on the flexural hinge-based bender in a synchrotron radiation instrument[J]. Opt. Precision Eng., 2002, 10(2):220-225.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxjm200202019&dbname=CJFD&dbcode=CJFQ
    [6] 黄志刚, 董晓浩, 高飞, 等.X射线衍射和散射光束线环面聚焦镜的面形精度与像差分析[J].光学 精密工程, 2004, 12(1):26-30. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxjm200401006&dbname=CJFD&dbcode=CJFQ

    HUANG ZH G, DONG X H, GAO F, et al.. Slope error and aberration analysis for XRDX beamline toroidal focusing mirror[J]. Opt. Precision Eng., 2004, 12(1):26-30.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxjm200401006&dbname=CJFD&dbcode=CJFQ
    [7] 孙福权, 傅远, 祝万钱, 等.压弯镜系统自重平衡多点调节方法的研究[J].核技术, 2011, 34(4):246-250. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjsu201104001&dbname=CJFD&dbcode=CJFQ

    SUN F Q, FU Y, ZHU W Q, et al.. A study on multi-point gravity compensation of mirror bending system[J]. Nuclear Techniques, 2011, 34(4):246-250.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjsu201104001&dbname=CJFD&dbcode=CJFQ
    [8] 卢启鹏, 高飒飒, 彭忠琦.同步辐射水平偏转压弯镜面形误差分析与补偿[J].光学 精密工程, 2011, 19(11):2644-2650. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxjm201111013&dbname=CJFD&dbcode=CJFQ

    LU Q P, GAO S S, PENG ZH Q. Analysis and compensation of slope error for synchrotron radiation horizontal deflected mirror[J]. Opt. Precision Eng., 2011, 19(11):2644-2650.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxjm201111013&dbname=CJFD&dbcode=CJFQ
    [9] KOKOROWSKI S A. Analysis of adaptive optical elements made from piezoelectric bimorphs[J]. J. Optical Society of America, 1979, 69(1):181-187. doi: 10.1364/JOSA.69.000181
    [10] LIPSON S G, RIBAK E N, SCHWARTZ C. Bimorph deformable mirror design[C]. Proceedings of SPIE, Adaptive Optics in Astronomy, 1994, 2201:703-714.
    [11] SCHWARTZ C, RIBAK E, LIPSON S G. Bimorph adaptive mirrors and curvature sensing[J]. J. Optical Society of America A-Optics Image Science and Vision, 1994, 11(2):895-902. doi: 10.1364/JOSAA.11.000895
    [12] SUSINI J, LABERGERIE D, ZHANG L. Compact active/adaptive X-ray mirror-bimorph piezoelectric flexible mirror[J]. Review of Scientific Instruments, 1995, 66(2):2229-2231. doi: 10.1063/1.1145715
    [13] SIGNORATO R, HIGNETTE O, GOULON J. Multi-segmented piezoelectric mirrors as active/adaptive optics components[J]. Journal of Synchrotron Radiation, 1998, 5:797-800. doi: 10.1107/S0909049597012843
    [14] SIGNORATO R, SOLE V A, GAUTHIER C. Performance of the ESRF ID26 beamline reflective optics[J]. J. Synchrotron Radiation, 1999, 6:176-178. doi: 10.1107/S0909049598013971
    [15] SIGNORATO R, CARRé J F, ISHIKAWA T. Performance of the SPring-8 modular piezoelectric bimorph mirror prototype[C]. Proceedings of SPIE, X-ray Mirrors, Crystals and Multilayers, 2001, 4501:76-87.
    [16] SIGNORATO R, ISHIKAWA T. R & D on third generation multi-segmented piezoelectric bimorph mirror substrates at SPring-8[J]. Nuclear Instruments and Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 2001, 467:271-274. http://www.sciencedirect.com/science/article/pii/S0168900201002972
    [17] ALCOCK S G, SUTTER J P, SAWHNEY K J S, et al.. Bimorph mirrors:the good, the bad, and the ugly[J]. Nuclear Instruments and Methods in Physics Research A, 2013, 710:87-92. doi: 10.1016/j.nima.2012.10.135
    [18] SAWHNEY K, ALCOCK S, SUTTER J, et al.. Characterisation of a novel super-polished bimorph mirror[J]. Journal of Physics:Conference Series, 2013, 425:052026. doi: 10.1088/1742-6596/425/5/052026
    [19] WANG H C, SAWHNEY K, BERUJON S, et al.. Fast optimization of a bimorph mirror using X-ray grating interferometry[J]. Optics Letters, 2014, 39(8):2518-2521. doi: 10.1364/OL.39.002518
    [20] ALCOCK S G, NISTEA I, SUTTER J P, et al.. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines[J]. J. Synchrotron Radiation, 2015, 22:10-15. doi: 10.1107/S1600577514020025
    [21] SUTTER J P, ALCOCK S G, KASHYAP Y, et al.. Creating flat-top X-ray beams by applying surface profiles of alternating curvature to deformable piezo bimorph mirrors[J]. J. Synchrotron Radiation, 2016, 23:1333-1347. doi: 10.1107/S1600577516013308
    [22] 阎瑾瑜.压电效应及其在材料方面的应用[J].数字技术与应用, 2011, 1:100-101. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=szjt201101068&dbname=CJFD&dbcode=CJFQ

    YAN J Y. Piezoelectric effect and its application in materials[J]. Digital Technology & Application, 2011, 1:100-101.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=szjt201101068&dbname=CJFD&dbcode=CJFQ
    [23] SUTTER J P, ALCOCK S G, SAWHNEY K J S. Automated in-situ optimization of bimorph mirrors at diamond light source[C]. Proceedings of SPIE, Advances in X-Ray/Euv Optics and Components Ⅵ, 2011, 8139:813906.
    [24] SAWHNEY K J S, ALCOCK S G, SIGNORATO R. A novel adaptive bimorph focusing mirror and wavefront corrector with sub-nanometre dynamical figure control[C]. Proceedings of SPIE, Adaptive X-ray Optics, 2010, 7803:780303.
  • 加载中
图(9)
计量
  • 文章访问数:  1183
  • HTML全文浏览量:  262
  • PDF下载量:  604
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-11
  • 修回日期:  2017-08-13
  • 刊出日期:  2017-12-01

目录

    /

    返回文章
    返回