留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高斯涡旋光束在大气湍流传输中的特性研究

娄岩 陈纯毅 赵义武 陶宗慧

娄岩, 陈纯毅, 赵义武, 陶宗慧. 高斯涡旋光束在大气湍流传输中的特性研究[J]. 中国光学(中英文), 2017, 10(6): 768-776. doi: 10.3788/CO.20171006.0768
引用本文: 娄岩, 陈纯毅, 赵义武, 陶宗慧. 高斯涡旋光束在大气湍流传输中的特性研究[J]. 中国光学(中英文), 2017, 10(6): 768-776. doi: 10.3788/CO.20171006.0768
LOU Yan, CHEN Chun-yi, ZHAO Yi-wu, TAO Zong-hui. Characteristics of Gaussian vortex beam in atmospheric turbulence transmission[J]. Chinese Optics, 2017, 10(6): 768-776. doi: 10.3788/CO.20171006.0768
Citation: LOU Yan, CHEN Chun-yi, ZHAO Yi-wu, TAO Zong-hui. Characteristics of Gaussian vortex beam in atmospheric turbulence transmission[J]. Chinese Optics, 2017, 10(6): 768-776. doi: 10.3788/CO.20171006.0768

高斯涡旋光束在大气湍流传输中的特性研究

doi: 10.3788/CO.20171006.0768
基金项目: 

吉林省科技发展计划项目 20140520115JH

详细信息
    作者简介:

    娄岩(1981-), 女, 吉林长春人, 博士, 助理研究员, 2008年于西安工业大学获得硕士学位, 2012年于长春理工大学获得博士学位, 2016年美国宾夕法尼亚州立大学做访问学者, 主要从事自由空间光通信计算机系统仿真机方面的研究

    通讯作者:

    娄岩, E-mail:louyan2008@126.com

  • 中图分类号: O43

Characteristics of Gaussian vortex beam in atmospheric turbulence transmission

Funds: 

Jilin Provincial S & T Development Project of China 20140520115JH

More Information
  • 摘要: 为了研究大气湍流对高斯涡旋光束传递信息的影响,理论分析了经过大气湍流的高斯涡旋光束轨道角动量(OAM)模式的径向平均功率和归一化平均功率分布、固有模式指数、初始光束半径和湍流强度;采用纯相位扰动逼近的有效性,数值模拟高斯涡旋光束在传输中的OAM模式径向平均功率分布的变化。建立传输模型并进行外场激光大气传输实验,对比分析了模拟和实测的OAM归一化平均功率分布,结果表明在弱湍流条件下,OAM模式的径向平均功率随着接收器孔径尺寸的增加而变化,逐渐趋于稳定值。对于一般常用的接收孔径,在强湍流或较小的初始光束半径条件下对OAM模式干扰十分严重。验证了用数值方法模拟OAM在湍流介质中的模式变化过程的可靠性。

     

  • 图 1  无大气湍流条件下传输中的高斯涡旋光束固有OAM模式径向功率分布

    Figure 1.  Radial power distributions of natural OAM mode of Gaussian vortex beams in transmission without atmospheric turbulence

    图 2  qc=5时,弱湍流中传输的高斯涡旋光束的OAM模式的径向平均功率

    Figure 2.  Radial mean power of OAM mode of Gaussian vortex beam transmitting in weak turbulence while qc=5

    图 3  qc=1.5时,强湍流中传输的高斯涡旋光束的OAM模式径向平均功率分布

    Figure 3.  Radial mean power distributions of OAM mode of Gaussian vortex beam transmitting in strong turbulence while qc=1.5

    图 4  高斯涡旋光束在大气湍流传输中的OAM模式传输实验

    Figure 4.  OAM mode transmission experiment of Gaussian vortex beam transmitting in atmospheric turbulence

    图 5  弱湍流条件下,理论模拟值与实测高斯涡旋光束的OAM模式归一化平均功率分布对比图

    Figure 5.  Comparison of normalized average power distributions of OAM mode between theoretical simulation value and measured Gaussian vortex beam under the condition of weak turbulence

  • [1] AKSENOV V P, KOLOSOV V V. Scintillations of optical vortex in randomly inhomogeneous medium[J]. Photon. Res., 2015, 3(2):44-47. doi: 10.1364/PRJ.3.000044
    [2] PATERSON C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication[J]. Phys. Rev. Lett., 2005, 94(15):153901. doi: 10.1103/PhysRevLett.94.153901
    [3] SHAPIRO J H, GUHA S, ERKMEN B I. Ultimate channel capacity of free-space optical communications[J]. J. Opt. Netw., 2005, 4(8):501-516. doi: 10.1364/JON.4.000501
    [4] ANGUITA J A, NEIFELD M A, VASIC B V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link[J]. Appl. Opt., 2008, 47(13):2414-2428. doi: 10.1364/AO.47.002414
    [5] WANG J, YANG J, FAZAL I M, et al.. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nat. Photon., 2012, 6(7):488-496. doi: 10.1038/nphoton.2012.138
    [6] REN Y, HUANG H, XIE G, et al.. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing[J]. Opt. Lett., 2013, 38(20):4062-4065. doi: 10.1364/OL.38.004062
    [7] GIBSON G, COURTIAL J, PADGETT M J, et al.. Free-space information transfer using light beams carrying orbital angular momentum[J]. Opt. Express, 2004, 12(22):5448-5456. doi: 10.1364/OPEX.12.005448
    [8] KRENN M, FICKLER R, FINK M, et al.. Communication with spatial modulated light through turbulent air across Vienna[J]. New J. Phys., 2014, 16:113028. doi: 10.1088/1367-2630/16/11/113028
    [9] 高明, 吴振森.远场光束扩展对光斑瞄准偏差影响的实验[J].光学 精密工程, 2010, 18(3):602-608. http://www.wenkuxiazai.com/doc/c8371b0552d380eb62946d71.html

    GAO M, WU ZH S. Experiments of effect of beam spreading of far-field on aiming deviation[J]. Opt. Precision Eng., 2010, 18(3):602-608.(in Chinese) http://www.wenkuxiazai.com/doc/c8371b0552d380eb62946d71.html
    [10] YAO A M, PADGETT M J. Orbital angular momentum:origins, behavior and applications[J]. Adv. Opt. Photon., 2011, 3(2):161-204. doi: 10.1364/AOP.3.000161
    [11] WANG F, CAI Y, KOROTKOVA O. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders[J]. Opt. Express, 2009, 17(25):22366-22379. doi: 10.1364/OE.17.022366
    [12] AKSENOV V P, KANEV F Y, POGUTSA C E. Spatial coherence, mean wave tilt, and mean local wave-propagation vector of a Laguerre-Gaussian beam passing through a random phase screen[J]. Atm. Ocean. Opt., 2010, 23(5):344-352. doi: 10.1134/S1024856010050027
    [13] GBUR G, TYSON R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation[J]. J. Opt. Soc. Am. A, 2008, 25(1):225-230. doi: 10.1364/JOSAA.25.000225
    [14] 方艳超, 郭立红, 李岩, 等.激光对风标式激光制导炸弹干扰效能分析[J].发光学报, 2013, 34(5):656-664. http://www.doc88.com/p-706869953703.html

    FANG Y C, GUO L H, LI Y, et al.. Jamming effectiveness analysis of the weather wane-type laser-guided bombs by laser[J]. Chin. J. Lumin., 2013, 34(5):656-664.(in Chinese) http://www.doc88.com/p-706869953703.html
    [15] WILLNER A E, HUANG H, YAN Y, et al.. Optical communications using orbital angular momentum beams[J]. Adv. Opt. Photon., 2015, 7(1):66-106. doi: 10.1364/AOP.7.000066
    [16] ZHU Y, LIU X, GAO J, et al.. Probability density of the orbital angular momentum mode of Hankel-Bessel beams in an atmospheric turbulence[J]. Opt. Express, 2014, 22(7):7765-7772. doi: 10.1364/OE.22.007765
    [17] GOPAUL C, ANDREWS R. The effect of atmospheric turbulence on entangled orbital angular momentum states[J]. New J. Phys., 2007, 9:94. doi: 10.1088/1367-2630/9/4/094
    [18] TYLER G A, BOYD R W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum[J]. Opt. Lett., 2009, 34(2):142-144. doi: 10.1364/OL.34.000142
    [19] GU Y, GBUR G. Measurement of atmospheric turbulence strength by vortex beam[J]. Opt. Commun., 2010, 283(7):1209-1212. doi: 10.1016/j.optcom.2009.11.049
    [20] ANDREWS L C, PHILLIPS R L. Laser Beam Propagation through Random Media[M]. 2nd ed. SPIE, 2005.
    [21] CHARNOTSKⅡ M. Extended Huygens-Fresnel principle and optical waves propagation in turbulence:discussion[J]. Opt. Soc. Am. A., 2015, 32(7):1357-1365. doi: 10.1364/JOSAA.32.001357
  • 加载中
图(5)
计量
  • 文章访问数:  1923
  • HTML全文浏览量:  527
  • PDF下载量:  772
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-11
  • 修回日期:  2017-11-13
  • 刊出日期:  2017-12-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!