留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变换光学透镜天线研究进展

曹尚文 周永江 程海峰

曹尚文, 周永江, 程海峰. 变换光学透镜天线研究进展[J]. 中国光学(中英文), 2017, 10(2): 164-175. doi: 10.3788/CO.20172002.0164
引用本文: 曹尚文, 周永江, 程海峰. 变换光学透镜天线研究进展[J]. 中国光学(中英文), 2017, 10(2): 164-175. doi: 10.3788/CO.20172002.0164
CAO Shang-wen, ZHOU Yong-jiang, CHENG Hai-feng. Research progress of transformation optics lens antenna[J]. Chinese Optics, 2017, 10(2): 164-175. doi: 10.3788/CO.20172002.0164
Citation: CAO Shang-wen, ZHOU Yong-jiang, CHENG Hai-feng. Research progress of transformation optics lens antenna[J]. Chinese Optics, 2017, 10(2): 164-175. doi: 10.3788/CO.20172002.0164

变换光学透镜天线研究进展

doi: 10.3788/CO.20172002.0164
详细信息
    作者简介:

    曹尚文 (1992-), 男, 山东济宁人, 硕士研究生, 2014年于国防科技大学获得学士学位, 主要从事人工电磁材料方面的研究。E-mail:caoshangw@163.com

    通讯作者:

    周永江 (1976-), 男, 湖南浏阳人, 副研究员, 硕士生导师, 2006年于国防科技大学获得博士学位, 主要从事微波功能材料方面的研究。E-mail:zyj.ly@163.com

  • 中图分类号: O431.1;TB34

Research progress of transformation optics lens antenna

  • 摘要: 龙伯透镜天线是一种独特的渐变折射率透镜天线,但因为某些缺陷其应用受到限制。近年来,人们采用变换光学方法和超材料理论设计了许多以平板龙伯透镜为代表的新型透镜天线。本文对比总结了变换光学设计透镜的3种方法,即坐标变换法、保角变换法和准保角变换法;指出了准保角变换法由于设计灵活、可使用全介电材料制备而更具研究和应用前景;详细阐述了准保角变换法设计透镜的原理和步骤;介绍了国内外关于透镜变换和制备具有影响力的研究成果;指出了变换光学透镜天线今后的研究方向。

     

  • 图 1  抛物面坐标变换透镜[27]

    Figure 1.  Coordinate transformation of the parabolic lens[27]

    图 2  DH.Kwon等[28]设计的两种变换 (a) 和蒋卫祥[29]提出的四向透镜天线 (b)

    Figure 2.  Two transformations (a) designed by DH.Kwon[28]and the four-beam antenna (b) proposed by Jiang Weixiang[29]

    图 3  分层坐标变换透镜[26]

    Figure 3.  Layered coordinate transformation lens[26]

    图 4  Kan Yao设计的光学透镜[37]

    Figure 4.  Optical lens designed by KanYao[37]

    图 5  平板麦克斯韦鱼眼透镜[40]

    Figure 5.  Flattened Maxwell fish-eye lens[40]

    图 6  柏京[41](a) 和Wu Qi[42](b) 设计的透镜折射率分布

    Figure 6.  Index distribution of lenses designed by Bai Jing[41](a) and Wu Qi[42](b)

    图 7  Kundtz设计的二维压缩龙伯透镜[49]

    Figure 7.  2D flattened Luneburg lens designed by Kundtz[49]

    图 8  崔铁军设计的三维龙伯透镜[50]

    Figure 8.  3D Luneburg lens designed by Cui Tiejun[50]

    图 9  Driscoll设计的三维龙伯透镜[51]

    Figure 9.  3D Luneburg lens designed by Driscoll[51]

    图 10  李守亮设计的三维共形透镜[53-54]

    Figure 10.  3D conformal lens designed by Li Shouliang[53-54]

    图 11  Wu Lingling等设计的液体介质平板龙伯透镜[55-56]

    Figure 11.  Liquid flattened Luneburg lens designed by Wu Lingling[55-56]

  • [1] 肖雨琴, 张英波, 李凤山.龙伯透镜天线的研制[J].舰船科学技术, 1992, 3:33-38. http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX199203006.htm

    XIAO Y Q, ZHANG Y B, LI F SH. Research on Luneburg lens antenna[J]. Ship Science and Technology, 1992, 3:33-38.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX199203006.htm
    [2] 刘璟. 多波束龙伯透镜天线技术研究[D]. 成都: 电子科技大学, 2010.

    LIU J. Study on multi-beam Luneburg lens antenna techniques[D]. Chengdu:University of Electronic Science and Technology of China, 2010.(in Chinese)
    [3] 钟鸣海. 分层龙伯透镜天线技术研究[D]. 成都: 电子科技大学, 2009.

    ZHONG M H. Study on layered Luneburg lens antenna techniques[D]. Chengdu:University of Electronic Science and Technology of China, 2009.(in Chinese)
    [4] JIANG W X, JESSIE Y C, CUI T J. Anisotropic metamaterialdevices[J]. Materials Today, 2009, 12(12):26-33. doi: 10.1016/S1369-7021(09)70314-1
    [5] SCHUIG D, MOCK JJ, JUSTICE B J, et al.. Metamaterialelectromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801):977-980. doi: 10.1126/science.1133628
    [6] MA H F, CUI T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nature Communication, 2010, 1(3):605-629. https://www.researchgate.net/publication/293880529_Supplementary_Figures/fulltext/56bcc98a08aed6959945b698/293880529_Supplementary_Figures.pdf?origin=publication_detail
    [7] WERNER D H, KWON D H. Transformation Electromagnetics and Metamaterials[M]. London:Springer, 2014.
    [8] CHEN H Y, CHAN C T, SHENG P. Transformation optics and metamaterials[J]. Nature Material, 2010, 9(5):387-96. doi: 10.1038/nmat2743
    [9] CHEN H Y, HOU B, CHEN S Y, et al.. Design and experimental realization of a broadband transformation media field rotator[J]. Physical Review Letters, 2009, 102(18):183903. doi: 10.1103/PhysRevLett.102.183903
    [10] SHU W X, YANG S S, YAN W Y, et al.. Flat designs of impedance-matchednon magnetic phase transformer and wave-shaping polarization splittervia transformation optics[J]. Optics Communications, 2014, 338:307-312.
    [11] CHEN C, LIU S B, WANG S Y. A shifted waveguide connector combinedwitha photonic crystal filter designed by transformationoptics[J]. Optics & Laser Technology, 2013, 49(49):161-165.
    [12] PENDRY J B, SCHUIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312:1780-1782. doi: 10.1126/science.1125907
    [13] LEONHARDT U. Optical conformal mapping[J]. Science, 2006, 312:1777-1780. doi: 10.1126/science.1126493
    [14] 蒋卫祥. 变换光学及其应用[D]. 南京: 东南大学, 2010.

    JIANG W X. Transformation optics and its applications[D]. Nanjing:Southeast University, 2010.(in Chinese)
    [15] 张永亮, 董贤子, 段宣明, 等.变换光学的物理原理和前沿进展[J].量子电子学报, 2014, 31(4):385-393. http://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201404001.htm

    ZHANG Y L, DONG X Z, DUAN X M, et al..Fundamental and frontiers of transformation optics[J]. Chinese J. Quantum Electronics, 2014, 31(4):385-393.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201404001.htm
    [16] 陈曦. 超材料的电磁特性与应用研究[D]. 长沙: 国防科学技术大学, 2013.

    CHEN X. Research on the electromagnetic characters and applications of metamaterial[D]. Changsha:National University of Defense Technology, 2013.(in Chinese)
    [17] 张检发, 袁晓东, 秦石乔.可调太赫兹与光学超材料[J].中国光学, 2014, 7(3):349-364. http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml

    ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3):349-364.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml
    [18] 贾秀丽, 王晓鸥, 周忠祥, 等.手性负折射率材料的最新进展[J].中国光学, 2015, 8(4):548-556. doi: 10.3788/co.

    JIA X L, WANG X O, ZHOU ZH X, et al.. Latest progress on chiral negative refractive index metamaterials[J]. Chinese Optics, 2015, 8(4):548-556.(in Chinese) doi: 10.3788/co.
    [19] 张会, 张卫宇, 徐旺, 等.THz波段光子晶体带隙影响因素研究[J].发光学报, 2012, 33(8):883-887. doi: 10.3788/fgxb

    ZHANG H, ZHANG W Y, XU W, et al.. Study on the influencing factors of photonic crystal's band gaps in THz waveband[J]. Chinese J. Luminescene, 2012, 33(8):883-887.(in Chinese) doi: 10.3788/fgxb
    [20] 庞永强. 电磁吸波超材料理论与设计研究[D]. 长沙: 国防科学技术大学, 2013.

    PANG Y Q. The theory and design of metamaterialabsorbers[D]. Changsha:National University of Defense Technology, 2013.(in Chinese)
    [21] MA H F, CHEN X, YANG X M, et al..A broadband metamaterial cylindrical lens antenna[J]. Chinese Science Bulletin, 2010, 55(19):2066-2070. doi: 10.1007/s11434-010-3021-y
    [22] ABDALLAH D, SHAH N B, ANDRE D L, et al..Compact metamaterial-based substrate-integrated Luneburg lens antenna[J]. Antennas and Wireless Propagation Letters, 2012, 11(4):1504-1507.
    [23] XUE L, FUSCO V F. 24 GHz automotive radar planar Luneburg lens[J]. Microw.Antennas.Propag, 2007, 1(3):624-628. doi: 10.1049/iet-map:20050203
    [24] 刘志佳. 基于开孔结构的龙伯透镜天线技术[D]. 成都: 电子科技大学, 2011.

    LIU ZH J. Techniques of Luneburg lens antenna based on drilled holes structure[D]. Chengdu:University of Electronic Science and Technology of China, 2011.(in Chinese)
    [25] MIN L, NG W R, CHANG K H, et al.. An X-band luneburg lens antenna fabricated by rapid prototyping[J]. IEEE MTT-S International Microwave Symposium, 2011:1-4. https://www.researchgate.net/publication/224251369_An_X-band_Luneburg_Lens_antenna_fabricated_by_rapid_prototyping_technology
    [26] 田小永, 殷鸣, 李涤尘.渐变折射率人工电磁介质设计与3D打印制造[J].机械工程学报, 2015(7):124-129. http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201507018.htm

    TIAN X Y, YIN M, LI D C. Design and fabrication of gradient index artificial electromagnetic medium based on 3D printing[J]. J. Mechanical Engineering, 2015(7):124-129.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201507018.htm
    [27] KONG F M, WU B L, KONG J A, et al..Planar focusing antenna design by using coordinate transformation technology[J]. Applied Physics Letters, 2007, 91(25):253509-3. doi: 10.1063/1.2826283
    [28] KWON D H, WERNER D H. Transformation optical designs for wave collimators, flat lenses and right-angle bends[J]. New J. Physics, 2008, 10(11):1005-1008. https://www.researchgate.net/publication/231148815_Transformation_optical_designs_for_wave_collimators_flat_lenses_and_right-angle_bends
    [29] JIANG W X, CUI T J, MA H F, et al.. Cylindrical to planewave conversion via embedded optical transformation[J]. Applied Physics Letters, 2008, 92(26):261903-3. doi: 10.1063/1.2953447
    [30] JIANG W X, CUI T J, MA H F, et al.. Layered high-gain lens antennas via discrete optical transformation[J]. Applied Physics Letters, 2008, 93(22):221906-3. doi: 10.1063/1.3040307
    [31] HUANG L J, WANG Z Q, ZHOU S T, et al.. A novel design for high gain lens antennas with homogeneous media[J]. Photonics and Nanostructures-Fundamentals and Applications, 2012, 10(4):615-623.
    [32] YAO K, JIANG X Y, CHEN H Y. Collimating lenses from non-euclidean transformationoptics[J]. New J. Physics, 2012, 14(2):23011-23019. doi: 10.1088/1367-2630/14/2/023011
    [33] ZHANG J J, LUO Y, XI S, et al.. Directive emission obtained by coordinate transformation[J]. Progress in Electromagnetics Research, 2008, 81(81):437-446. http://www.academia.edu/11022893/DIRECTIVE_EMISSION_OBTAINED_BY_COORDINATE_TRANSFORMATION
    [34] LUO Y, ZHANG J J, CHEN H S, et al..High-directivity antenna with small antenna aperture[J]. Applied Physics Letters, 2009, 95(19):193506-3. doi: 10.1063/1.3264085
    [35] TICHIT P H, BUROKUR, LUSTRAC A D. Ultradirective antenna via transformation optics[J]. J. Applied Physics, 2009, 105(10):104912-6. doi: 10.1063/1.3131843
    [36] TURPIN J P, MASSOUD A T, JIANG Z H, et al..Conformal mappings to achieve simple material parameters for transformation optics devices[J]. Optics Express, 2010, 18(18):244-252. https://www.researchgate.net/publication/41510547_Conformal_mappings_to_achieve_simple_material_parameters_for_transformation_optics_devices
    [37] YAO K, JIANG X Y. Designing feasible optical devices via conformal mapping[J]. J. Optical Society of America B, 2011, 28(5):1037-1043. doi: 10.1364/JOSAB.28.001037
    [38] 刘佳. 超材料在光学传输方面的应用研究[D]. 南京: 南京航空航天大学, 2014.

    LIU J. Application of metamaterial in optical transmission[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014.(in Chinese)
    [39] LI J, PENDRY J B. Hiding under the carpet:a new strategy for cloaking[J]. Physical Review Letters, 2008, 101(20):2952-2965. https://www.researchgate.net/publication/23710551_Hiding_under_the_Carpet_A_New_Strategy_for_Cloaking
    [40] SMITH D R, URZHUMOV Y, KUNDTZ N B, et al.. Enhancing imaging systems using transformation optics[J]. Optics Express, 2010, 18(20):21238-21251. doi: 10.1364/OE.18.021238
    [41] MEI Z L, BAI J, NIU T M. A planar focusing antenna designed using quasi-conformal mapping[J]. Progress in Electromagnetics Research M, 2010, 13(2):261-273. http://www.jpier.org/PIERM/pierm13/20.10053102.pdf
    [42] WU Q, TUIPIN J, TANG W X, et al.. Flat collimating lenses based on quasi-conformal transformation electromagnetics[C]. European Conference on Antennas and Propagation.IEEE, 2012:1696-1700.
    [43] KWON D H. Quasi-Conformal transformation optics lenses for conformal arrays[J]. IEEE Antennas & Wireless Propagation Letters, 2012, 11(12):1125-1128.
    [44] AGHANEJAD I, ABIRI H, YAHAGHI A. Design of high-gain lens antenna by gradient-index metamaterialsusing transformation optics[J]. IEEE Transactions on Antennas & Propagation, 2012, 60(9):4074-4081. https://www.researchgate.net/publication/258655412_Design_of_High-Gain_Lens_Antenna_by_Gradient-Index_Metamaterials_Using_Transformation_Optics
    [45] WU Q, JIANG Z H, TERUEL O Q, et al.. Transformation optics inspired multibeamlens antennas for broadband directive radiation[J]. IEEE Transactions on Antenna & Propagation, 2013, 61(12):5910-5922. https://www.researchgate.net/publication/260660639_Transformation_Optics_Inspired_Multibeam_Lens_Antennas_for_Broadband_Directive_Radiation
    [46] CHANG Z, ZHOU X M, HU J, et al.. Design method for quasi-isotropic transformation materials based on inverse Laplace's equation with sliding boundaries[J]. Optics Express, 2010, 18(6):6089-6096. doi: 10.1364/OE.18.006089
    [47] TANG W X, ARGYROPOULOS C, KALLOS E, et al.. Discrete coordinate transformation for designing all-dielectric flat antennas[J]. IEEE Transactions on Antennas & Propagation, 2011, 58(12):3795-3804.
    [48] SEGURA C M, DYKE A, DYKE H, et al.. Flat Luneburg lens via transformation optics for directive antenna applications[J]. IEEE Transactions on Antennas & Propagation, 2014, 62(4):1945-1953. https://www.researchgate.net/publication/263036424_Flat_Luneburg_Lens_via_Transformation_Optics_for_Directive_Antenna_Applications
    [49] KUNDTZ N, SMITH D R. Extreme-angle broadband metamateriallens[J]. Nature Materials, 2010, 9(9):129-132. https://www.researchgate.net/publication/40731121_Extreme-angle_broadband_metamaterial_lens
    [50] MA H F, CUI T J. Three-dimensional broadband and broad-angle transformation-optics lens[J]. Nature Communication, 2010, 1(8):173-184.
    [51] DRISCOLL T, LIPWORTH G, HUNT J, et al..Performance of a three dimensional transformation-optical-flattened Luneburg lens[J]. Optics Express, 2012, 20(12):13262-13273. doi: 10.1364/OE.20.013262
    [52] YANG R, TANG W X, HAO Y. A broadband zone plate lens from transformation optics[J]. Optics Express, 2011, 19(19):12348-12355.
    [53] LI S L, ZHANG Z, WANG J H, et al.. Design of conformal lens by drilling holes materials using quasiconformal transformation optics[J]. Optics Express, 2014, 22(21):25455-25465. doi: 10.1364/OE.22.025455
    [54] 李守亮. 变换电磁学在天线设计中的应用研究[D]. 北京: 北京交通大学, 2015.

    LI SH L. Research of transformation electromagnetic theory applied to antenna design[D]. Beijing:Beijing Jiaotong University, 2015.(in Chinese)
    [55] WU L L, TIAN X Y, MA H F, et al.. Broadband flattened Luneburg lens with ultra-wide angle based on a liquid medium[J]. Applied Physics Letters, 2013, 102(7):074103-4. doi: 10.1063/1.4793206
    [56] WU L L, TIAN X Y, YIN M, et al.. Three-dimensional liquid flattened Luneburg lens with ultra-wide viewing angle and frequency band[J]. Applied Physics Letters, 2013, 103(8):084102-4. doi: 10.1063/1.4819338
  • 加载中
图(11)
计量
  • 文章访问数:  2270
  • HTML全文浏览量:  458
  • PDF下载量:  1118
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-21
  • 修回日期:  2016-11-25
  • 刊出日期:  2017-04-01

目录

    /

    返回文章
    返回