留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型二维材料在固体激光器中的应用研究进展

公爽 田金荣 李克轩 郭于鹤洋 许昌兴 宋晏蓉

公爽, 田金荣, 李克轩, 郭于鹤洋, 许昌兴, 宋晏蓉. 新型二维材料在固体激光器中的应用研究进展[J]. 中国光学(中英文), 2018, 11(1): 18-30. doi: 10.3788/CO.20181101.0018
引用本文: 公爽, 田金荣, 李克轩, 郭于鹤洋, 许昌兴, 宋晏蓉. 新型二维材料在固体激光器中的应用研究进展[J]. 中国光学(中英文), 2018, 11(1): 18-30. doi: 10.3788/CO.20181101.0018
GONG Shuang, TIAN Jin-rong, LI Ke-xuan, GUOYU He-yang, XU Chang-xing, SONG Yan-rong. Advances in new two-dimensional materials and its application in solid-state lasers[J]. Chinese Optics, 2018, 11(1): 18-30. doi: 10.3788/CO.20181101.0018
Citation: GONG Shuang, TIAN Jin-rong, LI Ke-xuan, GUOYU He-yang, XU Chang-xing, SONG Yan-rong. Advances in new two-dimensional materials and its application in solid-state lasers[J]. Chinese Optics, 2018, 11(1): 18-30. doi: 10.3788/CO.20181101.0018

新型二维材料在固体激光器中的应用研究进展

doi: 10.3788/CO.20181101.0018
基金项目: 

国家自然科学基金项目 61575011

北京工业大学基础研究基金项目 X3006111201501

详细信息
    作者简介:

    公爽(1994—), 女, 山东临沂人, 硕士研究生, 主要从事固体激光器等方面的研究。E-mail:gongshuang@emails.bjut.edu.cn

    田金荣(1975—),男,山东德州人,博士,副教授,硕士生导师,主要从事全固态激光技术和飞秒激光技术等方面的研究。E-mail:jrtian@bjut.edu.cn

  • 中图分类号: TN248.1

Advances in new two-dimensional materials and its application in solid-state lasers

Funds: 

National Natural Science Foundation of China 61575011

Basic Research Foundation of Beijing University of Technology X3006111201501

More Information
  • 摘要: 本文主要介绍了二维可饱和吸收体材料在固体激光器中的应用与研究进展。简要介绍了新型二维材料的性质和优点。以石墨烯、拓扑绝缘体、过渡金属硫化物和黑磷等新型二维材料为例分析了它们在固体激光器中实现调Q或锁模的过程,展示了二维材料在脉冲固体激光研究中的重要应用前景。二维材料与固体激光器的结合,可进一步推进二维材料的研究,有望开发出大量新型固体激光器件并且作为基础光源应用于多个领域,推动相关领域的发展。

     

  • 图 1  石墨烯锁模Nd:YAG激光器示意图[20]

    Figure 1.  Schematic of the mode-locked Nd: YAG laser with graphene[20]

    图 2  石墨烯锁模Cr:ZnS激光器[30]

    Figure 2.  Schematic of the mode-locked Cr:ZnS laser with graphene[30]

    图 3  石墨烯锁模Cr:LiSAF激光器[43]

    Figure 3.  Schematic of the mode-locked Cr:LiSAF laser with graphene[43]

    图 4  Bi2Se3调Q的Er:YAG激光器[46]

    Figure 4.  Schematic of the Q-switched Er:YAG laser with Bi2Se3[46]

    图 5  MoS2为可饱和吸收体的Nd:YAlO3Q激光器[58]

    Figure 5.  Schematic of Q-switched Nd:YAlO3 laser with MoS2 as saturable absorber[58]

    图 6  WS2辅助锁模飞秒固体激光器示意图[71]

    Figure 6.  Schematic of the mode-locked Yb:YAG laser with WS2[71]

    图 7  黑磷锁模Nd:YVO4激光器实验装置[75]

    Figure 7.  Schematic of the mode-locked Nd: YVO4 laser with black phosphorus[75]

  • [1] ZAYHOWSKI J. Q-switched microchip lasers find real-world application[J]. Laser Focus World, 1999, 35(8):129-136. https://www.ll.mit.edu/.../pdf/vol03_no3/3.3.6.microchiplaser.pdf
    [2] WILLIAMS J A, FRENCH P M, TAYLOR J R, et al.. Passive mode locking of a cw energy-transfer dye laser operating in the infrared near 800 nm[J]. Opt. Lett., 1988, 13(10):811-813. doi: 10.1364/OL.13.000811
    [3] 朱启海, 赵长明, 张逸辰, 等.激光电池技术进展[J].光学 精密工程, 2016, 24(10):316-322. http://d.g.wanfangdata.com.cn/Periodical_kjxx-xsb200829046.aspx

    ZHU Q H, ZHAO CH M, ZHANG Y CH, et al. Development of laser cell technology[J]. Optics and Precision Engineering, 2016, 24(10):316-322.(in Chinese) http://d.g.wanfangdata.com.cn/Periodical_kjxx-xsb200829046.aspx
    [4] 曾飞, 高世杰, 伞晓刚, 张鑫, 等. 机载激光通信系统发展现状与趋势[J]. 中国光学, 2016, 9(1): 65-73. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgga201601009&dbname=CJFD&dbcode=CJFQ

    ZENG F, GAO SH J, SAN X G, et al. . Development status and trend of airborne laser communication terminals[J]. Chinese Optics, 2016, 9(1): 65-73. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgga201601009&dbname=CJFD&dbcode=CJFQ
    [5] KELLER U, MILLER D A, BOYD G D, et al.. Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers:an antiresonant semiconductor Fabry-Perot saturable absorber[J]. Opt. Lett., 1992, 17(7):505-507. doi: 10.1364/OL.17.000505
    [6] SCHMIDT W, FER S C H, et al.. Self-mode-locking of dye-lasers with saturated absorbers[J]. Phys. Lett. A, 1968, 26(11):558-559. doi: 10.1016/0375-9601(68)90546-X
    [7] SARUKUDA N, ISHIDA Y, YANAGAWA T, et al.. All solid state CW passively mode locked Ti:sapphire laser using a colored glass filter[J]. Appl. Phys. Lett., 1990, 57(3):229-230. doi: 10.1063/1.103724
    [8] JABCZYN J K, AGNESI A, GUANDALINI A, et al.. Application of V3+: YAG crystals for Q-switching and mode-locking of 1.3-μm diode-pumped neodymium lasers[J]. Opt. Eng., 2001, 40(12):2802-2811. doi: 10.1117/1.1418716
    [9] KELLER U, WEINGARTEN K J, KÄRTNER F X, et al.. Semiconductor saturable absorber mirrors(SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE J. Sel. Top. Quantum Electron., 1996, 2(3):435-453. doi: 10.1109/2944.571743
    [10] SET S Y, YAGUCHI H, TANAKA Y, et al.. Laser mode locking using a saturable absorber incorporating carbon nanotubes[J]. J. Lightwave Technol., 2004, 22(1):51. doi: 10.1109/JLT.2003.822205
    [11] RSCHIBLI T, MINOSHIMA K, KATAURA H, et al.. Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes[J]. Opt. Express, 2005, 13(20):8025-8031. doi: 10.1364/OPEX.13.008025
    [12] SCHMIDT A, RIVIER S, STEINMEYER G, et al.. Passive mode locking of Yb: KLuW using a single-walled carbon nanotube saturable absorber[J]. Opt. Lett., 2008, 33(7):729-731. doi: 10.1364/OL.33.000729
    [13] CHO W, YIM J, CHOI S, et al.. Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers[J]. Adv. Funct. Mater., 2010, 20(12):1937-1943. doi: 10.1002/adfm.v20:12
    [14] WANG F, ROZHIN A G, SCARDACI V, et al.. Wideband-tuneable nanotube mode-locked fibre laser[J]. Nat. Nanotechnol., 2008, 3(12):738-742. doi: 10.1038/nnano.2008.312
    [15] GEIM K, NOVOSELOV K S, et al.. The rise of graphene[J]. Nat. Materials, 2007, 6:183-191. doi: 10.1038/nmat1849
    [16] CASTRO NETO A H, GUINEA F, PERES N M R, et al.. The electronic properties of grapheme[J]. Rev. Mod. Phys., 2009, 81(1):109-162. doi: 10.1103/RevModPhys.81.109
    [17] BREUSING M, ROPERS C, ELSAESSER T, et al.. Ultrafast carrier dynamics in graphite[J]. Phys. Rev. Lett., 2009, 102(8):086809. doi: 10.1103/PhysRevLett.102.086809
    [18] BONACCORSO F, SUN Z, HASAN T. Graphene photonics and optoelectronics[J]. Nat. Photonics, 2010, 4(9):611-22. doi: 10.1038/nphoton.2010.186
    [19] ZHANG H, TANG D Y, ZHAO L M, et al.. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene[J]. Opt. Express, 2009, 17(20):17630-17635. doi: 10.1364/OE.17.017630
    [20] TAN W D, SU C Y, KNIZE R J, et al.. Mode locking of ceramic Nd: yttrium aluminum garnet with graphene as a saturable absorber[J]. Appl. Phys. Lett., 2010, 96(3):031106. doi: 10.1063/1.3292018
    [21] CHO W B, KIM J W, LEE H W, et al.. High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm[J]. Opt. Lett., 2011, 36(20):4089-4091. doi: 10.1364/OL.36.004089
    [22] HERNANDEZ Y, NICOLOSI V, LOTYA M, et al.. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat. Nanotechnol., 2008, 3(9):563. doi: 10.1038/nnano.2008.215
    [23] BOURLINOS A B, GEOGALILAS V, ZBORIL R, et al.. Pyrolytic formation and photoluminescence properties of a new layered carbonaceous material with graphite oxide-mimicking characteristics[J]. Carbon, 2009, 47(2):1841. https://www.sciencedirect.com/science/article/pii/S0008622308005873
    [24] XU J L, LI X L, WU Y Z, et al.. Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser[J]. Opt. Lett., 2011, 36(10):1948-1950. doi: 10.1364/OL.36.001948
    [25] XU J L, LI X L, HAO X P, et al.. Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser[J]. Appl. Phys. Lett., 2011, 99(26):261107. doi: 10.1063/1.3672213
    [26] XU J L, LI X L, HE J L, et al.. Efficient graphene Q switching and mode locking of 1.34 μm neodymium lasers[J]. Opt. Lett., 2012, 37(13):2652-2654. doi: 10.1364/OL.37.002652
    [27] BAEK I H, LEE H W, BAE S K, et al.. Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber[J]. Appl. Phys. Express, 2012, 5(3):032701. doi: 10.1143/APEX.5.032701
    [28] KIM J W, CHOI S Y, JUNG B H, et al.. Applicability of graphene flakes as saturable absorber for bulk laser mode-locking[J]. Appl. Phys. Express, 2012, 6(6):032704. https://www.researchgate.net/publication/258748689_Applicability_of_Graphene_Flakes_as_Saturable_Absorber_for_Bulk_Laser_Mode-Locking
    [29] XU S C, MAN B Y, JIANG S Z, et al.. Watt-level passively Q-switched mode-locked YVO4 /Nd: YVO4 laser operating at 1.06 μm using graphene as a saturable absorber[J]. Opt. Laser Technol., 2014, 56(3):393-397. https://www.sciencedirect.com/science/article/pii/S0030399214003004
    [30] TOLSTIK N, SOROKIN E, SOROKINA I T. Graphene mode-locked Cr: ZnS laser with 41 fs pulse duration[J]. Opt. Express, 2014, 22(5):5564-5571. doi: 10.1364/OE.22.005564
    [31] TOLSTIK N, POSPISCHIL A, SOROKIN E, et al.. Graphene mode-locked Cr: ZnS chirped-pulse oscillator[J]. Opt. Express, 2014, 22(6):7284-7289. doi: 10.1364/OE.22.007284
    [32] XU S C, MAN B Y, JIANG S Z, et al.. Sapphire-based graphene saturable absorber for long-time working femtosecond lasers[J]. Opt. Lett., 2014, 39(9):2707-2710. doi: 10.1364/OL.39.002707
    [33] XU S C, MAN B Y, JIANG S Z, et al.. Direct growth of graphene on quartz substrate as saturable absorber for femtosecond solid-state laser[J]. Laser Phys. Lett., 2014, 11(8):085801. doi: 10.1088/1612-2011/11/8/085801
    [34] MA J, XIE G Q, LV P, et al.. Wavelength versatile graphene gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers[J]. Sci. Rep., 2014, 4(6):6186. https://www.researchgate.net/publication/262581847_Wavelength-Versatile_Graphene-Gold_Film_Saturable_Absorber_Mirror_for_Ultra-Broadband_Mode-Locking_of_Bulk_Lasers
    [35] PANA S D, CUI L, LIU J Q, et al.. Passively Q-switched mode-locking Nd: GdVO4 laser with a chemically reduced graphene oxide saturable absorber[J]. Opt. Mater. Express, 2014, 38(20):42-45. https://www.sciencedirect.com/science/article/pii/S0030402615013807
    [36] HUANG Q J, JI W, JIANG S Z, et al.. Graphene absorber for passive mode-locking Nd: YVO4 laser[J]. Optik, 2015, 126(19):1844-1847. doi: 10.1016/j.ijleo.2015.05.016
    [37] GAO S. Diode-end-pumped, passively Q-switched, dual-wavelength, Nd: YAG crystal laser with monolayer graphene as saturable absorber operating at 1319 and 1338 nm[J]. Can. J. Physiol., 2016, 94(13):389-392.
    [38] MA J, HUANG H T, NING K J, et al.. Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb: CaYAlO4 laser[J]. Opt. Lett., 2016, 41(5):890-893. doi: 10.1364/OL.41.000890
    [39] LIN W M, DUAN X M, CUI Z, et al.. A passively Q-switched Ho: YVO4 laser at 2.05 μm with grapheme saturable absorber[J]. Appl. Sci, 2016, 6(5):128. https://www.researchgate.net/publication/224193471_Diode-pumped_passively_Q-switched_NdLu05Y05VO_4_laser_at_134_mm_with_Co2LaMgAl11O_19_as_the_saturable_absorber
    [40] CUI Z, CHEN Y, YAO B Q, et al.. Passively Q-switched Ho: YAG laser with multilayer graphene-based saturable absorber[J]. Chin. J. Lumin., 2016, 37(6):697. http://www.en.cnki.com.cn/Article_en/CJFDTotal-FGXB201606010.htm
    [41] CHO W B, CHOI S Y, ZHU C H, et al.. Graphene mode-locked femtosecond Cr2+: ZnS laser with ~300 nm tuning range[J]. Opt. Express, 2016, 24(18):20774-20780. doi: 10.1364/OE.24.020774
    [42] LIN H Y, ZHAO M J, LIN H J, et al.. Graphene-oxide as saturable absorber for a 1342 nm Q-switched Nd: YVO4 laser[J]. Optik, 2017, 135(2):129-133. https://es.scribd.com/doc/38529519/Lasers-and-Coherent-Light-Sources
    [43] CANBAZ F, KAKENOV N, KOCABAS C, et al.. Generation of sub-20-fs pulses from a graphene mode-locked laser[J]. Opt. Express, 2017, 25(3):2834-2839. doi: 10.1364/OE.25.002834
    [44] HASAN M Z, KANE C L, et al.. Colloquium:topological insulators[J]. Rev. Mod. Phys., 2010, 82(4):3045-3067. doi: 10.1103/RevModPhys.82.3045
    [45] LIU J W, HSIEH T H, WEI P, et al.. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator[J]. Nat. Mater., 2014, 13(2):178-183. doi: 10.1038/nmat3828
    [46] TANG P H, ZHANG X Q, ZHAO C J, et al.. Topological Insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er: YAG ceramic laser[J]. IEEE Photonics J., 2013, 5(2):1500707. doi: 10.1109/JPHOT.2013.2250494
    [47] YU H H, ZHANG H, WANG Y C, et al.. Topological insulator as an optical modulator for pulsed solid-state lasers[J]. Laser Photonics Rev., 2013, 7(6):77-83. doi: 10.1002/lpor.201300084
    [48] WANG B L, YU H H, ZHANG H, et al.. Topological insulator simultaneously Q-switched dual-wavelength Nd: Lu2O3 laser[J]. IEEE Photonics J., 2014, 6(3):1-7. http://ieeexplore.ieee.org/document/6807511/
    [49] HU M T, LIU J H, TIAN J R, et al.. Generation of Q-switched pulse by Bi2Se3 topological insulator in Yb: KGW laser[J]. Laser Phys. Lett., 2014, 11(11):115806. doi: 10.1088/1612-2011/11/11/115806
    [50] LI P X, ZHANG G J, ZHANG H, et al.. Q-switched mode-locked Nd: YVO4 laser by topological insulator Bi2Te3 saturable absorber[J]. IEEE Photonic Tech. L., 2014, 26(19):5806. https://www.researchgate.net/publication/283525949_Q-Switched_and_Q-Switched_Mode-Locking_Operation_from_NdYVO_4_Laser_using_Reflective_MoS_2_Saturable_Absorber
    [51] XU B, WANG Y, PENG J, et al.. Topological insulator Bi2Se3 based Q-switched Nd: LiYF4 nanosecond laser at 1313 nm[J]. Opt. Express, 2015, 23(6):7674-7680. doi: 10.1364/OE.23.007674
    [52] JIA F Q, CHEN H, LIU P, et al.. Nanosecond-Pulsed, dual-wavelength passively Q-switched c-Cut Nd: YVO4 laser using a few-layer Bi2Se3 saturable absorber[J]. IEEE J. Sel. Top. Quantum Electron., 2015, 21(1):369-374. doi: 10.1109/JSTQE.2014.2346612
    [53] XU J L, SUN Y J, HE J L, et al.. Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers[J]. Sci. Rep., 2015, 5(2):14856. https://www.researchgate.net/profile/Yan_Wang47/publication/282775286_Ultrasensitive_nonlinear_absorption_response_of_large-size_topological_insulator_and_application_in_low-threshold_bulk_pulsed_lasers/links/561db62e08ae50795afd830f.pdf
    [54] LIN Y Y, LEE P, XU J L, et al.. High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser[J]. IEEE Photonics J., 2016, 8(4):1-10. https://www.researchgate.net/publication/305037539_High-Pulse-Energy_Topological_Insulator_Bi2Te3-Based_Passive_Q-Switched_Solid-State_Laser
    [55] KUC A, ZIBOUCHE N, HEINE T, et al.. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys. Rev. B, 2011, 83(24):245213. doi: 10.1103/PhysRevB.83.245213
    [56] WANG K, WANG J, FAN J, et al.. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS. Nano, 2013, 7(10):9260-9267. doi: 10.1021/nn403886t
    [57] CHEN B H, ZHANG X Y, WAN K, et al.. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Opt. Express, 2015, 23(20):26723-26737. doi: 10.1364/OE.23.026723
    [58] XU B, CHENG Y J, WANG Y, et al.. Passively Q-switched Nd: YAlO3 nanosecond laser using MoS2 as saturable absorber[J]. Opt. Express, 2014, 22(23):28934-28940. doi: 10.1364/OE.22.028934
    [59] ZHAN Y, WANG L, WANG J Y, et al.. Yb: YAG thin disk laser passively Q-switched by a hydro-thermal grown molybdenum disulfide saturable absorber[J]. Laser Phys., 2015, 25(2):025901. doi: 10.1088/1054-660X/25/2/025901
    [60] LOU F, ZHAO R W, HE J L, et al.. Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber[J]. Photon. Res., 2015, 3(2):A25-A29. doi: 10.1364/PRJ.3.000A25
    [61] KONG L C, XIE G Q, YUAN P, et al.. Passive Q-switching and Q-switched mode-locking operations of 2 μm Tm: CLNGG laser with MoS2 saturable absorber mirror[J]. Photon. Res., 2015, 3(2):A47-A50. doi: 10.1364/PRJ.3.000A47
    [62] ZOU X, LENG Y X, LI Y Y, et al.. Passively Q-switched mode-locked Tm: LLF laser with a MoS2 saturable absorber[J]. Chin. Opt. Lett., 2015, 13(8):081405. doi: 10.3788/COL
    [63] LIN T, SUN H, WANG X, et al. Passively Q-switched Nd: YAG laser with a MoS2 solution saturable absorber[J]. Laser Phys., 2015, 25(12):125805. doi: 10.1088/1054-660X/25/12/125805
    [64] SUN Y J, XU J L, GAO S F, et al.. Wavelength-tunable, passively Q-switched Yb: Ca3Y2(BO3)4 solid state laser using MoS2 saturable absorber[J]. Mater. Lett., 2015, 160(2):268-270. https://gc.science.nus.edu.sg/biblio/export/bibtex
    [65] SUN Y J, XU J L, ZHU Z J, et al.. Comparison of MoS2nanosheets and hierarchical nanospheres in the application of pulsed solid-state lasers[J]. Opt. Mater. Express, 2015, 5(12):2924. doi: 10.1364/OME.5.002924
    [66] WANG K, YANG K J, ZHANG X Y, et al. Passively Q-switched laser at 1.3 μm with Few-layered MoS2 saturable absorber[J]. IEEE J. Sel. Top. Quantum Electron., 2017, 23(1):1600205. https://gc.science.nus.edu.sg/biblio/export/bibtex
    [67] ZHAO W F, YU H, LIAO M Z, et al.. Large area growth of monolayer MoS2 film on quartz and its use as a saturable absorber in laser mode-locking[J]. Semicond. Sci. Tech., 2017, 32(2):025013. doi: 10.1088/1361-6641/32/2/025013
    [68] KASSANI, KHAZAEINEZHAD R, JEONG H, et al.. All-fiber Er-doped Q-switched laser based on tungsten disulfide saturable absorber[J]. Opt. Mater. Express, 2015, 5(2):373-379. doi: 10.1364/OME.5.000373
    [69] MAO D, WANG Y, MA C, et al.. WS2 mode-locked ultrafast fiber laser[J]. Sci. Rep., 2015, 5:7965. doi: 10.1038/srep07965
    [70] ZHAO G, HAN S, WANG A Z, et al.. Chemical weathering exfoliation of atom-thick transition metal dichalcogenides and their ultrafast saturable absorption properties[J]. Adv. Funct. Mater., 2015, 25(33):5292-5299. doi: 10.1002/adfm.201501972
    [71] HOU J, ZHAO G, WU Y Z, et al.. Femtosecond solid state laser based on tungsten disulfide saturable absorber[J]. Opt. Express, 2015, 23(21):27292-27298. doi: 10.1364/OE.23.027292
    [72] WANG X, WANG Y G, DUAN L, et al.. Passively Q-switched Nd: YAG laser via a WS2saturable absorber[J]. Opt. Commun., 2016, 367(2):234-238. https://www.sciencedirect.com/science/article/pii/S0030399212001375
    [73] TANG W J, WANG Y J, YANG K J, et al.. 1.36 W Passively Q-Switched YVO4/Nd: YVO4 laser with a WS2 saturable absorber[J]. IEEE Photonic. Tech. L., 2017, 29(5):470-473. doi: 10.1109/LPT.2017.2657325
    [74] CHURCHILL, HUGH O H, PABLO J H. Two-dimensional crystals:phosphorus joins the family[J]. Nat. Nanotechnol., 2014, 9(5):330-331. doi: 10.1038/nnano.2014.85
    [75] ZHANG B, LOU F, ZHAO R, et al. Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser[J]. Opt. Lett., 2015, 40(16):3691-3694. doi: 10.1364/OL.40.003691
    [76] MA J, LU S, GUO Z, et al.. Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers[J]. Opt. Express, 2015, 23(17):22643-22648. doi: 10.1364/OE.23.022643
    [77] WANG Z W, ZHAO R W, HE J L, et al.. Multi-layered black phosphorus as saturable absorber for pulsed Cr: ZnSe laser at 2.4 μm[J]. Opt. Express, 2016, 24(2):1598-1603. doi: 10.1364/OE.24.001598
    [78] LU D Z, PAN Z B, ZHANG R, et al.. Passively Q-switched ytterbium-doped ScBO3 laser with black phosphorus saturable absorber[J]. Opt. Eng., 2016, 55(8):081312. doi: 10.1117/1.OE.55.8.081312
  • 加载中
图(7)
计量
  • 文章访问数:  2105
  • HTML全文浏览量:  442
  • PDF下载量:  872
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-05
  • 修回日期:  2017-10-26
  • 刊出日期:  2018-02-01

目录

    /

    返回文章
    返回