留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications

GOMON Daniel SEDYKH Egor RODRÍGUEZ Sebastián IDELFONSO Tafur Monroy ZAITSEV Kirill VOZIANOVA Anna KHODZITSKY Mikhail

GOMONDaniel, SEDYKHEgor, RODRÍGUEZSebastián, IDELFONSOTafur Monroy, ZAITSEVKirill, VOZIANOVAAnna, KHODZITSKYMikhail. 电环形谐振腔表面几何参数对太赫兹超材料吸收体性能的影响[J]. 中国光学(中英文), 2018, 11(1): 47-59. doi: 10.3788/CO.20181101.0047
引用本文: GOMONDaniel, SEDYKHEgor, RODRÍGUEZSebastián, IDELFONSOTafur Monroy, ZAITSEVKirill, VOZIANOVAAnna, KHODZITSKYMikhail. 电环形谐振腔表面几何参数对太赫兹超材料吸收体性能的影响[J]. 中国光学(中英文), 2018, 11(1): 47-59. doi: 10.3788/CO.20181101.0047
GOMON Daniel, SEDYKH Egor, RODRÍGUEZ Sebastián, IDELFONSO Tafur Monroy, ZAITSEV Kirill, VOZIANOVA Anna, KHODZITSKY Mikhail. Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications[J]. Chinese Optics, 2018, 11(1): 47-59. doi: 10.3788/CO.20181101.0047
Citation: GOMON Daniel, SEDYKH Egor, RODRÍGUEZ Sebastián, IDELFONSO Tafur Monroy, ZAITSEV Kirill, VOZIANOVA Anna, KHODZITSKY Mikhail. Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications[J]. Chinese Optics, 2018, 11(1): 47-59. doi: 10.3788/CO.20181101.0047

电环形谐振腔表面几何参数对太赫兹超材料吸收体性能的影响

Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications

doi: 10.3788/CO.20181101.0047
Funds: 

Government of Russian Federation Grant 074-U01

More Information
    Author Bio:

    GOMON Daniel(1989—), Ph.D. student of Photonics and Optical Information Technology Department, ITMO University. His research interests are on numerical modeling and simulation of metasurfaces for THz frequency range.E-mail:GomonDA89@ya.ru

    Tafur Monroy Idelfonso(1968—), Professor of Photonics Systems, Department of Electrical Engineering, and Director of Photonics Systems at the Photonic Integration Technology Center, Eindhoven University of Technology. His research interests are in Photonics technologies for Terahertz systems for communications, sensing and imaging. E-mail:i.tafur.monroy@tue.nl

    KHODZITSKY Mikhail(1984—), Chief of Terahertz Biomedicine Laboratory, Associate professor, Department of Photonics and Optical Information Technology, ITMO University, Russia. His research interests are on terahertz photonics, metamaterials, biophotonics and terahertz spectroscopy. E-mail:khodzitskiy@yandex.ru

    Corresponding author: IDELFONSO Tafur Monroy, E-mail:i.tafur.monroy@tue.nl
  • 摘要: 本文分析了电环形谐振腔的几何参数对超材料吸收体吸收率的影响。文中详细分析了电环形谐振腔参数、介电层(间隔物)厚度和电环形谐振腔厚度对超材料吸收体的影响,在此基础上,设置正交实验分析了几种参数的综合影响,最终获得超材料的理论吸收率。根据上述结果,制备了2个超材料吸收体的原理样机,经实验测得,原理样机的窄带吸收率高于98%。本文的研究成果为高性能吸收器的设计提供了指导。

     

  • Figure 1.  MMA Structure. 1.the silicic substrate(20 μm); 2.the copper reflective layer(0.5 μm); 3.the dielectric spacer(12 μm); 4.the copper ERR(0.5 μm)

    Figure 2.  Dispersion of refractive index(1) and absorption coefficient(2) of SU-8

    Figure 3.  Spectral characteristics of 5 samples with geometric parameters from Table 2 for y-polarized(a) and x-polarized(b) waves. The layers thicknesses are given from Tab. 1

    Figure 4.  Influence of the polyimide SU-8 layer thickness on the resonant peak absorptance(a) and on the Q-factor(b) for the sample 1 with the ERR layer thickness of 0.5 μm

    Figure 5.  Spectral characteristics of the Sample 1 with the optimized spacer thickness for y-polarized(a) and x-polarized(b) waves

    Figure 6.  E-field distribution in MMA samples for y-polarized wave at the frequencies:0.292 THz(a), 0.969 THz(b) and 1.623 THz(c) for the sample 1 with the optimized spacer thickness and the ERR layer thickness of 0.5 μm

    Figure 7.  E-field vector distribution in the MMA samples for x-polarized wave at the frequencies:0.398 THz(a) and 1.322 THz(b) for the sample 1 with the spacer layer thickness of 23 μm and the ERR layer thickness of 0.5 μm

    Figure 8.  Influence of the ERR layer thickness on the resonant peak absorptance(a) and on Q-factor(b) for the sample 1 with the polyimide layer thickness of 23 μm

    Figure 10.  Fabricated MMA samples:(a)Sample a and (b)sample b

    Figure 9.  Five steps of the fabrication of the MMA sample

    Figure 11.  Design of reflective THz spectrometer

    Figure 12.  Simulated reflection coefficient of samples a(a) and b(b) for x-polarized wave(θ=90°) and y-polarized wave(θ = 0°)

    Figure 13.  Reflection coefficient of the two experimental MMA samples for y-polarized(solid curve) and x-polarized(dotted curve). The geometric parameters of the samples are indicated above in Fig. 10

    Table  1.   Unit cell layer thickness

    Layer Material Layer thickness/μm
    1 Silicon 20
    2 Copper 0.5
    3 Polyimide SU-8 12
    4 Copper ERR 0.5
    下载: 导出CSV

    Table  2.   Simulated MMA geometric parameters

    MMA samples a/μm b/μm g/μm p/μm w/μm
    1 160 80 15 15 5
    2 176 88 15 15 5.5
    3 192 96 15 15 6
    4 208 104 15 15 6.5
    5 224 112 15 15 7
    下载: 导出CSV

    Table  3.   Simulated results for the 5 absorbers

    MMA sample y-polarized wave x-polarized wave
    fr/THz A/a.u. fr/THz A/a.u.
    1 0.99 0.377 0.42 0.549
    2 0.89 0.338 0.38 0.492
    3 0.8 0.318 0.35 0.466
    4 0.75 0.279 0.32 0.444
    5 0.68 0.275 0.29 0.407
    下载: 导出CSV

    Table  4.   Geometric parameters for the fabricated MMA

    MMA samples a/μm b/μm p/μm g/μm w/μm
    a 159 78 13 17 5
    b 208 98 13 23 6
    下载: 导出CSV
  • [1] KUZNETSOV S A, PAULISH A G, GELFAND A V, et al.. Matrix structure of metamaterial absorbers for multispectral terahertz imaging[J]. Progress In Electromagnetics Research, 2012, 122:93-103. doi: 10.2528/PIER11101401
    [2] HU T, LANDY N I, BINGHAM C M, et al.. A metamaterial absorber for the terahertz regime:design, fabrication and characterization[J]. Optics Express, 2008, 16(10):7181-7188. doi: 10.1364/OE.16.007181
    [3] LANDY N I, SAJUYIGBE S, MOCK J J, et al.. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402. doi: 10.1103/PhysRevLett.100.207402
    [4] WEN Q Y, XIE Y S, ZHANG H W, et al.. Transmission line model and fields analysis of metamaterial absorber in the terahertz band[J]. Optics Express, 2009, 17(22):20256-20265. doi: 10.1364/OE.17.020256
    [5] HU T, BINGHAM C M, STRIKWERDA A C, et al.. Highly flexible wide angle of incidence terahertz metamaterial absorber:design, fabrication, and characterization[J]. Physical Review B, 2008, 78(24):241103. doi: 10.1103/PhysRevB.78.241103
    [6] LANDY N I, BINGHAM C M, TYLER T, et al.. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging[J]. Physical Review B, 2009, 79(12):125104. doi: 10.1103/PhysRevB.79.125104
    [7] YE YUQIAN, YI JIN, SAILING HE. Omni-directional, broadband and polarization-insensitive thin absorber in the terahertz regime[J]. Journal of the Optical Society of America B, 2009, 27(3):498-504. https://arxiv.org/pdf/0906.2137v1
    [8] SHCHEGOLKOV D Y, AZAD A K, O'HARA J F, et al.. Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers[J]. Physical Review B, 2010, 82(20):205117. doi: 10.1103/PhysRevB.82.205117
    [9] HU T, BINGHAM C M, PILON D, et al.. A dual band terahertz metamaterial absorber[J]. Journal of Physics D:Applied Physics, 2010, 43(22):225102. doi: 10.1088/0022-3727/43/22/225102
    [10] SHEN X P, CUI T J, ZHAO J M, et al.. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express, 2011, 19(10):9401-9407. doi: 10.1364/OE.19.009401
    [11] GRANT J, MA Y, SAHA S, et al.. Polarization insensitive, broadband terahertz metamaterial absorber[J]. Optics Letters, 2011, 36(17):3476-3478. doi: 10.1364/OL.36.003476
    [12] WANG B X, ZHAI X, WANG G Z, et al.. A novel dual-band terahertz metamaterial absorber for a sensor application[J]. Journal of Applied Physics, 2015, 117(1):014504. doi: 10.1063/1.4905261
    [13] ALBANI M, BERNARDI P. A numerical method based on the discretization of maxwell equations in integral form, short papers)[J]. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(4):446-450. doi: 10.1109/TMTT.1974.1128246
    [14] NOVOTNY L, HECHT B. Principles of Nano-optics[M]. London:Cambridge University Press, 2012.
    [15] ZAITSEV K I, CHERNOMYRDIN N V, KUDRIN K G, et al.. Terahertz spectroscopy of pigmentary skin nevi in vivo[J]. Optics and Spectroscopy, 2015, 119(3):404-410. doi: 10.1134/S0030400X1509026X
    [16] OLSHEVSKAYA J S, RATUSHNYAK A S, PETROV A K, et al. . Effect of terahertz electromagnetic waves on neurons systems[C]. IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, SIBIRCON 2008. IEEE, 2008, DOI: 10.1109/SIBIRCON.2008.4602607.
    [17] KISELIOV V K, MAKOLINETS V I, MITRYAEVA N A, et al. . Application of terahertz lasers setup for the investigation of the influence of HHF-radiation on the tumor processes[C]. 37th International Conference on Infrared, Millimeter, and Terahertz Waves(IRMMW-THz), IEEE, 2012: 1-2. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6380431
    [18] CHEN X D, GRZEGORCZTK T M, WU B I, et al.. Robust method to retrieve the constitutive effective parameters of metamaterials[J]. Physical Review E, 2004, 70(1):016608. doi: 10.1103/PhysRevE.70.016608
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  2029
  • HTML全文浏览量:  571
  • PDF下载量:  495
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-11
  • 修回日期:  2017-11-25
  • 刊出日期:  2018-02-01

目录

    /

    返回文章
    返回