电环形谐振腔表面几何参数对太赫兹超材料吸收体性能的影响
Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications
doi: 10.3788/CO.20181101.0047
-
摘要: 本文分析了电环形谐振腔的几何参数对超材料吸收体吸收率的影响。文中详细分析了电环形谐振腔参数、介电层(间隔物)厚度和电环形谐振腔厚度对超材料吸收体的影响,在此基础上,设置正交实验分析了几种参数的综合影响,最终获得超材料的理论吸收率。根据上述结果,制备了2个超材料吸收体的原理样机,经实验测得,原理样机的窄带吸收率高于98%。本文的研究成果为高性能吸收器的设计提供了指导。Abstract: In this paper, the effect of the geometrical parameters of an electrical ring resonator(ERR) on the total absorptivity of metamaterial absorbers is analyzed. In particular, the effect of electrical ring resonator parameters, dielectric layer(spacer) thickness and electrical ring resonator thickness on the absorber of metamaterials are analyzed in detail. On this basis, the orthogonal experiment is set up to analyze the combined effects of several parameters and finally obtain the theoretical absorptivity of metamaterials. Based on the above results, the principle prototype of two metamaterial absorbers is prepared. The results show that the narrowband absorptivity of the prototype is higher than 98%, which provide guidance for the design of high performance absorber.
-
Key words:
- metamaterials /
- spectroscopy /
- terahertz /
- absorbers
-
Figure 13. Reflection coefficient of the two experimental MMA samples for y-polarized(solid curve) and x-polarized(dotted curve). The geometric parameters of the samples are indicated above in Fig. 10
Table 1. Unit cell layer thickness
Layer Material Layer thickness/μm 1 Silicon 20 2 Copper 0.5 3 Polyimide SU-8 12 4 Copper ERR 0.5 Table 2. Simulated MMA geometric parameters
MMA samples a/μm b/μm g/μm p/μm w/μm 1 160 80 15 15 5 2 176 88 15 15 5.5 3 192 96 15 15 6 4 208 104 15 15 6.5 5 224 112 15 15 7 Table 3. Simulated results for the 5 absorbers
MMA sample y-polarized wave x-polarized wave fr/THz A/a.u. fr/THz A/a.u. 1 0.99 0.377 0.42 0.549 2 0.89 0.338 0.38 0.492 3 0.8 0.318 0.35 0.466 4 0.75 0.279 0.32 0.444 5 0.68 0.275 0.29 0.407 Table 4. Geometric parameters for the fabricated MMA
MMA samples a/μm b/μm p/μm g/μm w/μm a 159 78 13 17 5 b 208 98 13 23 6 -
[1] KUZNETSOV S A, PAULISH A G, GELFAND A V, et al.. Matrix structure of metamaterial absorbers for multispectral terahertz imaging[J]. Progress In Electromagnetics Research, 2012, 122:93-103. doi: 10.2528/PIER11101401 [2] HU T, LANDY N I, BINGHAM C M, et al.. A metamaterial absorber for the terahertz regime:design, fabrication and characterization[J]. Optics Express, 2008, 16(10):7181-7188. doi: 10.1364/OE.16.007181 [3] LANDY N I, SAJUYIGBE S, MOCK J J, et al.. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402. doi: 10.1103/PhysRevLett.100.207402 [4] WEN Q Y, XIE Y S, ZHANG H W, et al.. Transmission line model and fields analysis of metamaterial absorber in the terahertz band[J]. Optics Express, 2009, 17(22):20256-20265. doi: 10.1364/OE.17.020256 [5] HU T, BINGHAM C M, STRIKWERDA A C, et al.. Highly flexible wide angle of incidence terahertz metamaterial absorber:design, fabrication, and characterization[J]. Physical Review B, 2008, 78(24):241103. doi: 10.1103/PhysRevB.78.241103 [6] LANDY N I, BINGHAM C M, TYLER T, et al.. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging[J]. Physical Review B, 2009, 79(12):125104. doi: 10.1103/PhysRevB.79.125104 [7] YE YUQIAN, YI JIN, SAILING HE. Omni-directional, broadband and polarization-insensitive thin absorber in the terahertz regime[J]. Journal of the Optical Society of America B, 2009, 27(3):498-504. https://arxiv.org/pdf/0906.2137v1 [8] SHCHEGOLKOV D Y, AZAD A K, O'HARA J F, et al.. Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers[J]. Physical Review B, 2010, 82(20):205117. doi: 10.1103/PhysRevB.82.205117 [9] HU T, BINGHAM C M, PILON D, et al.. A dual band terahertz metamaterial absorber[J]. Journal of Physics D:Applied Physics, 2010, 43(22):225102. doi: 10.1088/0022-3727/43/22/225102 [10] SHEN X P, CUI T J, ZHAO J M, et al.. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express, 2011, 19(10):9401-9407. doi: 10.1364/OE.19.009401 [11] GRANT J, MA Y, SAHA S, et al.. Polarization insensitive, broadband terahertz metamaterial absorber[J]. Optics Letters, 2011, 36(17):3476-3478. doi: 10.1364/OL.36.003476 [12] WANG B X, ZHAI X, WANG G Z, et al.. A novel dual-band terahertz metamaterial absorber for a sensor application[J]. Journal of Applied Physics, 2015, 117(1):014504. doi: 10.1063/1.4905261 [13] ALBANI M, BERNARDI P. A numerical method based on the discretization of maxwell equations in integral form, short papers)[J]. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(4):446-450. doi: 10.1109/TMTT.1974.1128246 [14] NOVOTNY L, HECHT B. Principles of Nano-optics[M]. London:Cambridge University Press, 2012. [15] ZAITSEV K I, CHERNOMYRDIN N V, KUDRIN K G, et al.. Terahertz spectroscopy of pigmentary skin nevi in vivo[J]. Optics and Spectroscopy, 2015, 119(3):404-410. doi: 10.1134/S0030400X1509026X [16] OLSHEVSKAYA J S, RATUSHNYAK A S, PETROV A K, et al. . Effect of terahertz electromagnetic waves on neurons systems[C]. IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, SIBIRCON 2008. IEEE, 2008, DOI: 10.1109/SIBIRCON.2008.4602607. [17] KISELIOV V K, MAKOLINETS V I, MITRYAEVA N A, et al. . Application of terahertz lasers setup for the investigation of the influence of HHF-radiation on the tumor processes[C]. 37th International Conference on Infrared, Millimeter, and Terahertz Waves(IRMMW-THz), IEEE, 2012: 1-2. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6380431 [18] CHEN X D, GRZEGORCZTK T M, WU B I, et al.. Robust method to retrieve the constitutive effective parameters of metamaterials[J]. Physical Review E, 2004, 70(1):016608. doi: 10.1103/PhysRevE.70.016608