留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于近红外量子点的荧光共振能量转移生物探针构建及应用

修景锐 胡思怡 李金华 任升 刘丽炜

修景锐, 胡思怡, 李金华, 任升, 刘丽炜. 基于近红外量子点的荧光共振能量转移生物探针构建及应用[J]. 中国光学, 2018, 11(1): 74-82. doi: 10.3788/CO.20181101.0074
引用本文: 修景锐, 胡思怡, 李金华, 任升, 刘丽炜. 基于近红外量子点的荧光共振能量转移生物探针构建及应用[J]. 中国光学, 2018, 11(1): 74-82. doi: 10.3788/CO.20181101.0074
XIU Jing-rui, HU Si-yi, LI Jin-hua, REN Sheng, LIU Li-wei. Construction and application of FRET biological probe based on near infrared InP/ZnS quantum dots[J]. Chinese Optics, 2018, 11(1): 74-82. doi: 10.3788/CO.20181101.0074
Citation: XIU Jing-rui, HU Si-yi, LI Jin-hua, REN Sheng, LIU Li-wei. Construction and application of FRET biological probe based on near infrared InP/ZnS quantum dots[J]. Chinese Optics, 2018, 11(1): 74-82. doi: 10.3788/CO.20181101.0074

基于近红外量子点的荧光共振能量转移生物探针构建及应用

doi: 10.3788/CO.20181101.0074
基金项目: 

深圳大学新入职教师启动项目 2017027

国家自然基金科学基金 61722508

长春理工大学科技创新基金 XJJLG-2015-01

长春理工大学青年基金 XQNJJ-2016-10

详细信息
    作者简介:

    修景锐(1993—), 男, 内蒙古赤峰人, 硕士研究生, 主要从事纳米光子学与生物光子学方面的研究。E-mail:jingrui_xiu@outlook.com

    李金华(1977—),女,吉林长春人,教授,博士生导师,2006年于中国科学院长春光学精密机械与物理研究所获理学博士学位,主要从事纳米光电功能材料及二维导电材料的制备、物性和应用、半导体光电子器件,以及纳米生物成像及传感方面的研究。E-mail:lijin-hua2000@yahoo.com

    刘丽炜(1980—),女,广东深圳人,博士,教授,博士生导师,2009年、2013年于长春理工大学分别获得硕士、博士学位,主要从事纳米材料制备、光学、非线性光学特性、纳米生物成像及传感方面的研究。E-mail:llw_cust@163.com

  • 中图分类号: O644.17

Construction and application of FRET biological probe based on near infrared InP/ZnS quantum dots

Funds: 

Natural Science Foundation of SZU 2017027

National Natural Science Foundation of China 61722508

Changchun University of Science and Technology Innovation Fund XJJLG-2015-01

Changchun University of Science and Technology Youth Fund XQNJJ-2016-10

More Information
  • 摘要: 本论文构建了基于近红外量子点InP/ZnS和Cy7(C45H44K3N3O16S4)的荧光共振能量转移(FRET)体系,完成了不同pH值和不同浓度下的FRET体系转换效率的检测。检测结果显示:当量子点浓度保持不变时,随着染料浓度的增加,体系转换效率也随之增加,当InP/ZnS量子点与Cy7浓度比为1:250时,转换效率高达68%。细胞测试结果表明,FRET体系对pH值有较高敏感度,对细胞微环境pH值的检测精度可达0.1,该体系可以作为敏感型FRET探针用于生物微环境检测。
  • 图  1  InP/ZnS量子点和Cy7荧光染料的吸收和发射光谱对比图

    Figure  1.  Comparison of absorption and emission spectra of InP/ZnS quantum dots and Cy7 fluorescent dyes

    图  2  InP/ZnS量子点,Cy7,FRET体系的FTIR光谱

    Figure  2.  FTIR spectra of InP/ZnS quantum dots, Cy7 fluorescent dyes and FRET system

    图  3  改变InP/ZnS量子点浓度时的FRET体系(a)荧光光谱图(b)相应的FRET转换效率

    Figure  3.  FRET system when the InP / ZnS quantum dot concentration is changed. (a)Fluorescence spectra (b)FRET conversion efficiency

    图  4  改变Cy7浓度时的FRET体系(a)荧光光谱图(b)相应的FRET转换效率

    Figure  4.  FRET system when the Cy7 concentration is changed. (a)Fluorescence spectra (b)FRET conversion efficiency

    图  5  Cy7(a)和InP/ZnS量子点(b)在不同pH值溶液中的荧光光谱图

    Figure  5.  Fluorescence spectra of Cy7(a) and InP/ZnS quantum dots(b) in different pH solutions

    图  6  FRET体系在不同pH值溶液中的荧光光谱图

    Figure  6.  Fluorescence spectra of FRET system in different pH solutions

    图  7  FRET体系的细胞毒性测试

    Figure  7.  Relative cell viability of MCF-7 breast cancer cell treated with FRET system

    图  8  FRET体系对不同细胞微环境的检测

    Figure  8.  Detection result of different cell microenvironment by FRET system

    图  9  FRET体系对MCF-7乳腺癌细胞的荧光标记

    Figure  9.  Fluorescently label in MCF-7 breast cancer cells by FRET system

  • [1] 胡珊. 荧光共振能量转移体系的研究及其在均相免疫分析中的应用[D]. 武汉: 华中科技大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10487-1011036089.htm

    HU SH. Sudy on fluorescence resonance energy transfer system and its application in homogeneous immunoassay[D]. WuHan: Huazhong University of Science and Technology, 2010. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10487-1011036089.htm
    [2] FORSTER T. Intermolecular energy migration and fluorescence[J]. Ann. Physics, 1948, 2:55-75. http://www.oalib.com/references/7320187
    [3] 郭尧君.荧光实验技术及其在分子生物学中的应用[M].北京:科学出版社, 1979.

    GUO Y J. Fluorescence Experimental Techniques and Their Applications in Molecular Biology[M]. Beijing:Science Press, 1979.(in Chinese)
    [4] LAKOWICZ J R. Energy Transfer:In Principles of Fluorescence Spectroscopy[M]. New York:Plenum Press, 1983.
    [5] CLEGG R. Fluorescence Imaging Spectroscopy and Microscopy[M]. NewYork:Wiley, 1996.
    [6] ANGELIS D A D. Fluorescence Resonance Energy Transfer Fret[M]. Encyclopedia of Medical Genomics and Proteomics.2004:1420.
    [7] FENG Y SH, LIU L W, HU S Y, et al.. Förster resonance energy transfer properties of a new type of near-infrared excitation PDT photosensitizer: CuInS2/ZnS quantum dots-5-aminolevulinic acid conjugates[J]. RSC Adv., 2016, 6:55568-55576. doi: 10.1039/C6RA06937A
    [8] FENG Y SH, LIU L W, HU S Y, et al.. Four-photon-excited fluorescence resonance energy transfer in an aqueous system from ZnSe:Mn/ZnS quantum dots to hypocrellin A[J]. Optics Express, 2016, 24(17):19627-19637. doi: 10.1364/OE.24.019627
    [9] KIKUCHI K, TAKAKUSA H, NAGANO T. Recent advances in the design of small molecule-based FRET sensors for cell biology[J]. Trends in Analytical Chemistry, 2004, 23(6):407-415. doi: 10.1016/S0165-9936(04)00608-9
    [10] JANSSEN A, BEERLING E, MEDEMA R, et al.. Intravital FRET imaging of tumor cell viability and mitosis during chemotherapy[J]. PLoS One, 2013, 8(5):e64029. doi: 10.1371/journal.pone.0064029
    [11] YUAN L, LIN W, ZHENG K, et al.. FRET-based small-molecule fluorescent probes:rational design and bioimaging applications[J]. Accounts of Chemical Research, 2013, 46(7):1462-1473. doi: 10.1021/ar300273v
    [12] TAO H L, LIAO X F, et al.. Determination of trace Hg2+ ions based on the fluorescence resonance energy transfer between fluorescent brightener and CdTe quantum dots[J]. Journal of Luminescence, 2014, 146: 376-381. doi: 10.1016/j.jlumin.2013.10.005
    [13] JIANG G F, TANG Y. A novel two-photon fluorescent probe for hydrogen sulfide in living cells using an acedan-NBD amine dyad based on FRET process with high selectivity and sensitivity[J]. New Journal of Chemistry, 2017, 41(14):6769-6774. doi: 10.1039/C7NJ01080J
    [14] WANG Y, SI B, LU S, et al.. Near-infrared excitation of CdTe quantum dots based on fluorescence resonance energy transfer and their use as fluorescent sensors[J]. Sensors & Actuators B Chemical, 2017, 246:127-135. https://www.sciencedirect.com/science/article/pii/S0925400516307079
    [15] 张旭霞, 李斌, 张黎明, 等.有机-无机复合纳米材料的传感应用及机理[J].中国光学, 2015, 8(4):651-666. http://www.chineseoptics.net.cn/CN/abstract/abstract9330.shtml

    ZHANG X X, LI B, ZHANG L M, et al.. Sensing application and mechanism of organic-inorganic nanocomposites[J]. Chinese Optics, 2015, 8(4):651-666.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9330.shtml
    [16] 翟英歌, 楚学影, 徐铭泽, 等.ZnS:Cu-罗丹明B的荧光共振能量转移性质[J].发光学报, 2017, 38(8):1028-1032. http://www.cqvip.com/QK/92489X/199302/1022267.html

    ZHAI Y G, CHU X Y, XU M Z, et al.. Properties of fluorescence resonance energy transfer of ZnS:Cu-rhodamine B[J]. Chinese Journal of Luminescence, 2017, 38(8):1028-1032.(in Chinese) http://www.cqvip.com/QK/92489X/199302/1022267.html
    [17] 袁曦, 郑金桔, 李海波, 等.Mn掺杂ZnSe量子点变温发光性质研究[J].中国光学, 2015, 8(5):806-813. http://www.chineseoptics.net.cn/CN/abstract/abstract9349.shtml

    YUAN X, ZHENG J J, LI H B, et al.. Temperature-dependent photoluminescence properties of Mn-doped ZnSe quantum dots[J]. Chinese Optics, 2015, 8(5):806-813.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9349.shtml
    [18] 王英帅, 周颖, 王珺楠, 等.金纳米棒核/二氧化硅壳纳米复合结构的可控制备及细胞成像[J].中国光学, 2013, 6(5):743-749. http://www.chineseoptics.net.cn/CN/abstract/abstract9059.shtml

    WANG Y SH, ZHOU Y, WANG J N, et al.. Controlled synthesis and cell imaging of gold nanorod-silica core-shell nanoparticles[J]. Chinese Optics, 20136(5):743-749.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9059.shtml
    [19] 刘姝妤, 钟绵增, 孟秀清, 等.ZnO/ZnS核-壳量子点的双光子吸收效应[J].发光学报, 2015, 36(2):249-255. http://www.opticsjournal.net/abstract.htm?id=OJ150215000023PmSoVr

    LIU SH Y, ZHONG J Z, MENG X Q, et al.. Two-photon absorption in ZnO/ZnS core-shell quantum dots[J]. Chinese Journal of Luminescence, 2015, 36(2):249-255. http://www.opticsjournal.net/abstract.htm?id=OJ150215000023PmSoVr
    [20] 刘惠玲. 纳米材料内部FRET体系的设计及在单/双光子光动力治疗中的潜在应用[D]. 南京: 南京工业大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3108216

    LIU H L. Design of FRET system in nanomaterials and its potential application in single/two photon photodynamic therapy[D]. Nanjing: Nanjing University of Technology, 2016. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3108216
    [21] REMEDIOS C G, MOENS P D. Fluorescence resonance energy transfer spectroscopy is a reliable "ruler" for measuring structural changes in proteins-dispelling the problem of the unknown orientation factor[J]. Journal of Structural Biology, 1995, 115(2):175-185. doi: 10.1006/jsbi.1995.1042
    [22] LIU L. Quantum dots:the new development of FRET[J]. Progress in Chemistry, 2006, 18(2):337-343. https://www.researchgate.net/publication/282707728_Quantum_dots_The_new_development_of_FRET
    [23] STEYER L, HAUGLANG R P. Energy transfer:a spectroscopic ruler[J]. Proceedings of the National Academy of Sciences of the United States of America, 1967, 58(2):719. doi: 10.1073/pnas.58.2.719
  • 加载中
图(9)
计量
  • 文章访问数:  799
  • HTML全文浏览量:  179
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-11
  • 修回日期:  2017-11-27
  • 刊出日期:  2018-02-01

目录

    /

    返回文章
    返回