留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间引力波探测望远镜初步设计与分析

王智 沙巍 陈哲 王永宪 康玉思 罗子人 黎明 李钰鹏

王智, 沙巍, 陈哲, 王永宪, 康玉思, 罗子人, 黎明, 李钰鹏. 空间引力波探测望远镜初步设计与分析[J]. 中国光学(中英文), 2018, 11(1): 131-151. doi: 10.3788/CO.20181101.0131
引用本文: 王智, 沙巍, 陈哲, 王永宪, 康玉思, 罗子人, 黎明, 李钰鹏. 空间引力波探测望远镜初步设计与分析[J]. 中国光学(中英文), 2018, 11(1): 131-151. doi: 10.3788/CO.20181101.0131
WANG Zhi, SHA Wei, CHEN Zhe, KANG Yu-si, LUO Zi-ren, LI Ming, LI Yu-peng. Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chinese Optics, 2018, 11(1): 131-151. doi: 10.3788/CO.20181101.0131
Citation: WANG Zhi, SHA Wei, CHEN Zhe, KANG Yu-si, LUO Zi-ren, LI Ming, LI Yu-peng. Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chinese Optics, 2018, 11(1): 131-151. doi: 10.3788/CO.20181101.0131

空间引力波探测望远镜初步设计与分析

doi: 10.3788/CO.20181101.0131
基金项目: 

中国科学院战略性先导科技专项(B):多波段引力波宇宙研究——空间太极计划预研 XDB23030000

详细信息
    作者简介:

    王智(1978—),男,山东寿光人,博士,研究员,2003年于长春理工大学获得硕士学位,2006年于中科院长春光机所获得博士学位,现为德国马普爱因斯坦研究所访问学者,主要从事空间引力波探测方面的研究。E-mail:wz070611@126.com

  • 中图分类号: TH743

Preliminary design and analysis of telescope for space gravitational wave detection

Funds: 

Strategic Priority Research Program of the Chinese Academy of Sciences XDB23030000

More Information
    Author Bio:

    WANG Zhi(1978—), received his Ph.D. degree from Changchun Institute of Optics and Fine Mechanics, Chinese Academy of Sciences in 2006. Currently, Dr. Wang is a visiting scholar at Max Planck Institutein Germany where he is conducting research activities in the areas of space gravitational wave detection. E-mail:wz070611@126.com

    Corresponding author: WANG Zhi, E-mail:wz070611@126.com
  • 摘要: 引力波的直接观测已开启引力波天文学的新篇章,爱因斯坦的百年预言终获证实。空间引力波探测器使得探测0.1 mHz~1 Hz频段丰富的引力波源成为可能,与地面引力波探测器互为补充,才可实现更加宽广波段的引力波探测,揭开宇宙早期的更多秘密。空间激光干涉引力波探测采用外差干涉测量技术,测量间距百万公里的两自由悬浮测试质量间10 pm量级的变化量。望远镜是激光干涉测量系统的重要组成部分,1 pm的光程稳定性及苛刻的杂散光要求,不同于传统的几何成像望远镜。本文根据空间太极计划任务需求,对望远镜的功能及技术要求进行了分析,并完成了原理样机的初步方案设计,针对百万公里远场波前分布,分析了望远镜系统的敏感性,同时完成了在轨光机热集成仿真,为后面原理样机的研制奠定了技术基础。

     

  • 图 1  空间引力波探测天文台,三个航天器构成等边三角形,通过端点航天器间的激光链路来测量位于端点的测试质量间距离的变化[3]

    Figure 1.  A space-based gravitational wave observatory, consists of an equilateral triangle of three spacecraft with laser links between endpoint spacecraft, to measure the change in the distance between the test masses at the endpoint[3]

    图 2  LISA轨道及航天器编队示意图,航天器组成的平面与黄道面夹角约为60°, 航天器星座质心落后地球约20°,航天器之间的距离为5×106 km[3]

    Figure 2.  Schematic diagram of LISA orbit and spacecraft formation. The angle between the spacecraft plane and the ecliptic plane is about 60°. The constellation trails earth by about 20°, and the distance between spacecraft is 5×106 km[3]

    图 3  引力波经过测试质量组成的三角形编队。三角形编队中3个测试质量代表3个LISA航天器,红色臂长的时变量即需要测量的引力波引起的距离变化量[1]

    Figure 3.  Gravity waves pass through the triangle formation formed by the test masses. The three test masses in formation represent three LISA spacecraft, the time variable of the red arm length represents the distance variation caused by the gravitational wave that needs to be measured

    图 4  望远镜的功能,在两航天器间有效的收发激光束,建立激光链路用于精密测量两测试质量间距离的变化[7]

    Figure 4.  The functions of the telescope is to send and receive laser beams efficiently between the two spacecraft and to establish a laser link for the precise measurement of the change in the distance between the two test masses[7]

    图 5  LISA光学载荷模型,望远镜视轴与干涉仪光学平台垂直,测试质量固定在光学平台后面[8]

    Figure 5.  LISA optical load model, the interferometer telescope optical axis is perpendicular to the interferometer optical platform. The test masses are fixed behind the optical platform[8]

    图 6  望远镜光学系统设计

    Figure 6.  Optical system design of telescope

    图 7  系统出瞳处波前质量,RMS值0.013λ

    Figure 7.  Wavefront performance at exit-pupil of telescope, RMS is 0.013λ

    图 8  系统出瞳处强度分布

    Figure 8.  Intensity distribution at exit-pupil of telescope

    图 9  系统出瞳处相位分布

    Figure 9.  Phase distribution at exit-pupil of telescope

    图 10  激光波前传播示意图

    Figure 10.  Schematic diagram of wavefront propagation of laser

    图 11  发射望远镜波前λ/60,5×106 km处强度(a)和波前(b)分布图

    Figure 11.  Diagrams of intensity and wavefront distributions at 5×106 km with telescope wave front of λ/60

    图 12  次镜M2在X方向偏心0.5 μm时5×106 km处波前分布和变化量

    Figure 12.  Wavefront distribution and variation at 5×106 km with X decenter of M2 of 0.5 μm

    图 13  次镜M2在Y方向偏心0.5 μm时5×106 km处波前分布和变化量

    Figure 13.  Wavefront distribution and variation at 5×106 km with Y decenter of M2 of 0.5 μm

    图 14  次镜M2在Z方向偏心0.5 μm时5×106 km处波前分布和变化量

    Figure 14.  Wavefront distribution and variation at 5×106 km with Z decenter of M2 of 0.5 μm

    图 15  次镜M2绕X轴旋转0.4″时5×106 km处波前分布和变化量

    Figure 15.  Wavefront distribution and variation at 5×106 km with M2 rotating around X by 0.4″

    图 16  次镜M2绕Y轴旋转0.4″时5×106 km处波前分布和变化量

    Figure 16.  Wavefront distribution and variation at 5×106 km with M2 rotating around Y by 0.4″

    图 17  次镜M2绕Z轴旋转0.4″时5×106 km处波前分布和变化量

    Figure 17.  Wavefront distribution and variation at 5×106 km with M2 rotating around Z by 0.4″

    图 18  次镜M2半径变化1 μm时5×106 km处波前分布和变化量

    Figure 18.  Wavefront distribution and variation at 5×106 km with radius change of M2 of 1 μm

    图 19  次镜M2二次曲面系数变化0.001时5×106 km处波前分布和变化量

    Figure 19.  Wavefront distribution and variation at 5×106 km with conic change of M2 of 0.001

    图 20  望远镜原理样机

    Figure 20.  Telescope prototype

    图 21  各反射镜面形云图

    Figure 21.  Surface nephograms of mirrors

    图 22  在轨望远镜各视场波前

    Figure 22.  Wavefront performance of all fields for in-orbit telescope

    表  1  望远镜关键技术指标

    Table  1.   Key technology requirements of telescope

    Characteristics Requirements
    Aperture 20 cm
    Optical efficiency ≥0.853
    Field of view
    acquisition mode 400μrad full angle
    Science mode(out of plane) ±7 μrad
    (in plane) ±4.2 μrad in-plane
    Optical path length stability
    Magnification 40
    Far-field wavefront quality λ/20
    下载: 导出CSV

    表  2  望远镜结构参数变化量

    Table  2.   Variations of telescope parameters

    Type of variations Variations M1 M2 M3 M4
    position X decenter/μm 0.5 0.5 0.5 0.5
    Y decenter/μm 0.5 0.5 0.5 0.5
    Z decenter/μm 0.5 0.5 0.5 0.5
    X tilt/(″) 0.4 0.4 0.4 0.4
    Y tilt/(″) 0.2 0.4 0.4 0.4
    Z tilt/(″) 0.4 0.4 - -
    surface Radius/μm 1 1 1 1
    Conic 0.00001 0.001 - -
    下载: 导出CSV

    表  3  5×106 km处远场波前变化量PV值

    Table  3.   Far field wavefront variations(PV) at 5×106 km

    Type of variations Variations Variation PV(λ)
    M1 M2 M3 M4
    position X decenter/μm 8.26×10-6 1.12×10-6 1.33×10-6 1.47×10-6
    Y decenter/μm 4.34×10-7 5.35×10-8 1.05×10-7 2.93×10-6
    Z decenter/μm 4.04×10-7 1.47×10-6 1.31×10-7 2.70×10-8
    X tilt/(″) 3.33×10-6 1.31×10-6 1.10×10-6 6.16×10-7
    Y tilt/(″) 2.42×10-7 5.91×10-8 7.94×10-7 6.61×10-8
    Z tilt/(″) 3.46×10-9 1.30×10-6 - -
    surface Radius/mm 8.86×10-7 1.87×10-6 1.26×10-7 1.99×10-8
    Conic 4.07×10-7 1.06×10-6 - -
    下载: 导出CSV

    表  4  各反射镜的平动和转动

    Table  4.   Translaton and rotation of mirrors

    M1 M2 M3 M4
    PV/nm 45.721 1.663 0.121 0.711
    RMS/nm 8.927 0.503 0.032 0.183
    ΔX/μm 0.001 -0.369 -0.005 -0.024
    ΔY/μm -0.403 0.977 0.497 -1.271
    ΔZ/μm 0.855 1.407 0.540 -0.988
    Δθx/(″) -0.363 -0.009 2.570 2.063
    Δθy/(″) 0.104 -0.403 0.011 0.027
    下载: 导出CSV
  • [1] KARSTEN D. LISA(Unveiling a hidden Universe) Assessment Study Report[R]. ESA/SRE, 2011, 3. doi: 10.1007/s10714-014-1793-0
    [2] JEFFREY C L, SHANNON R S. Optical telescope system-level design considerations for a space-based gravitational wave mission[J]. SPIE, 2011, 9904:99041K. https://ntrs.nasa.gov/search.jsp?R=20170003764
    [3] OTTO M. Time-delay interferometry simulations for the laser interferometer space antenna[D]. Hannover: Max Planck Institute for Gravitational Physics, 2015. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-19-17-15937
    [4] 罗子人, 白姗, 边星, 等.空间激光干涉引力波探测[J].力学进展, 2013, 43(4):415-447. doi: 10.6052/1000-0992-13-044

    LUO Z R, BAI SH, BIAN X, et al.. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4):415-447.(in Chinese) doi: 10.6052/1000-0992-13-044
    [5] 戚子文, 刘炳国, 张仲海, 等.双点干涉法位相缺陷检测中的解相算法比较[J].中国光学, 2016, 9(4):483-490. http://www.chineseoptics.net.cn/CN/abstract/abstract9439.shtml

    QI Z W, LIU B G, ZHANG ZH H, et al. Comparison of phase extraction algorithms in testing of phase defects with two-point interference[J]. Chinese Optics, 2016, 9(4):483-490.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9439.shtml
    [6] 王智, 马军, 李静秋, 等.空间引力波探测计划-LISA系统设计要点[J].中国光学, 2015, 8(6):980-987. http://www.chineseoptics.net.cn/CN/abstract/abstract9334.shtml

    WANG ZH, MA Jun, LI J Q, et al.. Space-based gravitational wave detection mission: design highlights of LISA system[J]. Chinese Optics, 2015, 8(6):980-987.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9334.shtml
    [7] MARCELLO S. Payload preliminary design description[R]. LISA-MSE-DD-0001, Issue 1, rev 1, 2009.
    [8] OLIVER J. NGO(Revealing a hidden Universe: opening a new chapter of discovery) Assessment Study Report[R]. ESA/SRE(2011)19, December 2011. doi: 10.1007/s11431-015-5770-y
    [9] BENDER P, BRILLET A. LISA Pre-phase A Report[R]. Max-Planck-Institut for Quantenoptic, 1998. https://www.yumpu.com/en/document/view/11462402/pre-phase-a-report-lisa-nasa
    [10] BENDER P L. Wavefront distortion and beam pointing for LISA[J]. Class. Quantum Grav, 2005, 22(S):339-346. https://www.researchgate.net/publication/243412646_Wavefront_distortion_and_beam_pointing_for_LISA
    [11] SANKAR S, LIVAS J. Testing and characterization of a prototype telescope for the evolved Laser Interferometer Space Antenna(eLISA)[J]. SPIE, 9904:99045A. https://www.spiedigitallibrary.org/redirect/proceedings/proceeding?doi=10.1117/12.2233075
    [12] VERLAAN A L, HOGENHUIS H, PIJNENBUR G J, et al.. LISA telescope assembly optical stability characterization for ESA[J]. SPIE, 2012, 8450, 845003. https://www.spiedigitallibrary.org/redirect/proceedings/proceeding?doi=10.1117/12.925112
    [13] LIVAS J, SANKAR S. Optical telescope design study results[J]. J. Physics:Conference Series, 2015, 610:012029. doi: 10.1088/1742-6596/610/1/012029
    [14] 宋同消. 空间引力波探测中激光波前误差分析[D]. 北京: 首都师范大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10028-1013289485.htm

    SONG T X. Analysis of wavefront distortion in detection of gravitational wave in space[D]. Beijing: Capital Normal University, 2013. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10028-1013289485.htm
    [15] 杨帅, 沙巍, 陈长征, 等.空间相机碳纤维框架的设计与优化[J].光学精密工程, 2017, 25(3):697-705. https://mall.cnki.net/qikan-HWYJ201407032.html

    YANG SH, SHA W, CHEN CH ZH, et al.. Design and optimization of carbon fiber framework for space camera[J]. Opt. Precision Eng., 2017, 25(3):697-705.(in Chinese) https://mall.cnki.net/qikan-HWYJ201407032.html
  • 加载中
图(22) / 表(4)
计量
  • 文章访问数:  3112
  • HTML全文浏览量:  610
  • PDF下载量:  603
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-11
  • 修回日期:  2017-08-13
  • 刊出日期:  2018-02-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!