留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海面太阳耀光背景下的偏振探测技术

张卫国

张卫国. 海面太阳耀光背景下的偏振探测技术[J]. 中国光学(中英文), 2018, 11(2): 231-236. doi: 10.3788/CO.20181102.0231
引用本文: 张卫国. 海面太阳耀光背景下的偏振探测技术[J]. 中国光学(中英文), 2018, 11(2): 231-236. doi: 10.3788/CO.20181102.0231
ZHANG Wei-guo. Application of polarization detection technology under the background of sun flare on sea surface[J]. Chinese Optics, 2018, 11(2): 231-236. doi: 10.3788/CO.20181102.0231
Citation: ZHANG Wei-guo. Application of polarization detection technology under the background of sun flare on sea surface[J]. Chinese Optics, 2018, 11(2): 231-236. doi: 10.3788/CO.20181102.0231

海面太阳耀光背景下的偏振探测技术

doi: 10.3788/CO.20181102.0231
基金项目: 

国家自然科学基金资助项目 61605199

详细信息
    作者简介:

    张卫国(1968—),男,山西原平人,硕士,高级工程师,1999年于中国科学院长春光学精密机械与物理研究所获得硕士学位,主要从事靶场光学测量方面的总体研究。E-mail:zwg222@126.com

  • 中图分类号: O439

Application of polarization detection technology under the background of sun flare on sea surface

Funds: 

National Natural Science Foundation of China 61605199

More Information
  • 摘要: 为了实时抑制太阳耀光对海面目标探测的影响,基于偏振光学理论,设计并构建了一套偏振自适应滤波探测系统。本文介绍了偏振探测系统的功能和组成、偏振探测及背景抑制原理,并给出了该系统的光学设计结果;利用自适应偏振滤波探测系统,通过搭载望远镜跟踪试验平台,针对海上典型目标,开展了相关的偏振验证实验。实验结果表明:海面太阳耀光存在比较明显的偏振特性,采用常规探测手段,探测器极易出现饱和,而利用偏振探测技术则能够有效抑制太阳耀光的影响,进而实现目标的有效探测。

     

  • 图 1  偏振自适应滤波系统的组成及内部连接关系

    Figure 1.  Internal composition and connection in polarization adaptive filtering system

    图 2  偏振系统光路示意图

    Figure 2.  Optical path schematic of polarization system

    图 3  偏振分析仪点列图

    Figure 3.  Spot diagram of polarization analyzer

    图 4  偏振探测仪点列图

    Figure 4.  Spot diagram of polarization detector

    图 5  偏振分析仪MTF曲线图

    Figure 5.  MTF of polarization analyzer

    图 6  偏振探测仪MTF曲线图

    Figure 6.  MTF curves of polarization detector

    图 7  静止目标抑制效果比对图

    Figure 7.  Comparison of suppression effects for static target

    图 8  采用非偏探测时运动目标非耀光区和耀光区非偏效果比对图

    Figure 8.  Comparison of moving target on the non-glare zone and glare zone(non-polarized) by using non-polarization detection

    图 9  采用非偏探测与偏振探测相结合时运动目标非耀光区和耀光区偏振效果比对图

    Figure 9.  Comparison of moving target on the non-glare zone and glare zone(polarized) by combining non-polarizaion and polarization detection technology

    表  1  数据分析结果

    Table  1.   Data analysis results

    观测区域 目标灰度 背景灰度 对比度
    非耀光区 1 174 1 760 0.667
    耀光区(非偏) 1 635 4 136 0.395
    耀光区(偏振) 807 1 428 0.565
    下载: 导出CSV
  • [1] LYNCH D K, DEARBORN D S P, LOCK J A. Glitter and glints on water[J]. Appl. Optics, 2011, 50(28):39-49. doi: 10.1364/AO.50.000F39
    [2] KAY S, HEDLEY J D, LAVENDER S. Sun glint correction of high and low spatial resolution images of aquatic scenes:a review of methods for visible and near-infrared wavelengths[J]. Remote Sensing, 2009, 1(4):697-730. doi: 10.3390/rs1040697
    [3] GARABA S P, ZIELINSKI O. Methods in reducing surface reflected glint for shipborne above-water remote sensing[J]. J. Europ. Opt. Soc. Rap. Public, 2013, 8:13058. doi: 10.2971/jeos.2013.13058
    [4] TONIZZO A, HARMEL T, IBRAHIM A, et al.. Sensitivity of the above water polarized reflectance to the water composition[J]. Proc. of SPIE, 2010, 7825:78250F. doi: 10.1117/12.865510
    [5] ALESSANDRO ROSSI, ALDO RICCOBONO, STEFANO LANDINI. Sun-glint false alarm mitigation in a maritime scenario[J]. Proc. of SPIE, 2014, 9250:92500X. doi: 10.1117/12.2067325
    [6] 李岩, 张伟杰, 陈嘉玉.偏振场景目标探测的建模与仿真[J].光学精密工程, 2017, 25(8):2233-2243. http://www.eope.net/gxjmgc/CN/abstract/abstract17164.shtml

    LI Y, ZHAGN W J, CHEN J Y. Modeling and simulation for target detection in polarization scene[J]. Opt. Precision Eng., 2017, 25(8):2233-2243.(in Chinese) http://www.eope.net/gxjmgc/CN/abstract/abstract17164.shtml
    [7] 李克武, 王黎明, 王志斌, 等.弹光和电光级联的组合相位调制型椭偏测量术[J].光学精密工程, 2016, 24(4):690-697. http://www.opticsjournal.net/Articles/abstract?aid=OJ160606000467dJgMjP

    LI K W, WAGN L M, WANG ZH B, et al.. Phase-modulated ellipsometry combined photo-elastic modulation with electro-optic modulation[J]. Opt. Precision Eng., 2016, 24(4):690-697.(in Chinese) http://www.opticsjournal.net/Articles/abstract?aid=OJ160606000467dJgMjP
    [8] 陈慧敏, 刘新阳.收发同轴脉冲激光引信在水雾中的后向散射偏振特性[J].光学精密工程, 2015, 23(3):626-631. http://www.opticsjournal.net/Abstract.htm?id=OJ150420000259IeKhNk

    CHEN H M, LIU X Y. Backscattering polarization characteristics of pulsed laser fuze with coaxial optical system in water fog[J]. Opt. Precision Eng., 2015, 23(3):626-631.(in Chinese) http://www.opticsjournal.net/Abstract.htm?id=OJ150420000259IeKhNk
    [9] 林涛, 赵尚弘, 朱子行, 等.基于偏振调制的四倍频相位编码信号产生[J].光学与光电技术, 2017, 15(4):33-37. http://www.cqvip.com/QK/87090X/201204/42737245.html

    LIN T, ZHAO SH H, ZHU Z H, et al.. Frequency quadrupling phase-coded signal generation based on polarization modulation[J]. Optics & Optoelectronic Technology, 2017, 15(4):33-37.(in Chinese) http://www.cqvip.com/QK/87090X/201204/42737245.html
    [10] 李淑军, 姜会林, 朱京平, 等.偏振成像探测技术发展现状及关键技术[J].中国光学, 2013, 6(6):803-809. http://www.chineseoptics.net.cn/CN/abstract/abstract9069.shtml

    LI SH J, JIANG H L, ZHU J P. Development status and key technologies of polarization imaging detection[J]. Chinese Optics, 2013, 6(6):803-809.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9069.shtml
    [11] ZHOU G H, XU W J, NIU CH Y, et al.. The polarization patterns of skylight reflected off wave water surface[J]. Opt. Exp., 2013, 21(26):32549-32565. doi: 10.1364/OE.21.032549
    [12] CHUNMIN Z, BAOCHANG Z, BIN X. Wide-field-of-view polarization interference imaging spectrometer[J]. Appl. Optics, 2004, 43(33):6090-6094. doi: 10.1364/AO.43.006090
    [13] COX C, MUNK W H. Slopes of the sea surface deduced from photographs of sun glitter[J]. Scripps Inst. Oceanogr. Bull., 1956, 6:401-487. https://escholarship.org/uc/item/1p202179
    [14] JOSé LUIS POOM-MEDINA, JOSUé áLVAREZ-BORREGO, BEATRIZ MARTíN-ATIENZA, et al.. Theoretical statistical relationships between the intensities of an image of the sea surface and its slopes:a result comparison of rect and Gaussian glitter functions[J]. Optical Engineering, 2014, 53:043103. doi: 10.1117/1.OE.53.4.043103
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  2283
  • HTML全文浏览量:  809
  • PDF下载量:  433
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-11
  • 修回日期:  2017-12-13
  • 刊出日期:  2018-04-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!